Rare stellar alignment offers opportunity to hunt for planets

Jun 03, 2013
This plot shows the projected motion of the red dwarf star Proxima Centauri (green line) over the next decade, as plotted from Hubble Space Telescope observations. Because of parallax due to Earth's motion around the sun, the path appears scalloped. Because Proxima Centauri is the closest star to our sun (distance, 4.2 light-years), its angular motion across the sky is relatively fast compared to much more distant background stars. This means that in 2014 and 2016 Proxima Centauri will pass in front of two background stars that are along its path. The background image shows a wider view of the region of sky in the southern constellation Centaurus that Proxima is traversing. Credit:NASA, ESA, K. Sahu and J. Anderson (STScI), H. Bond (STScI and Pennsylvania State University), M. Dominik (University of St. Andrews), and Digitized Sky Survey (STScI/AURA/UKSTU/AAO)

(Phys.org) —NASA's Hubble Space Telescope will have two opportunities in the next few years to hunt for Earth-sized planets around the red dwarf Proxima Centauri.

The opportunities will occur in October 2014 and February 2016 when Proxima Centauri, the star nearest to our sun, passes in front of two other stars. Astronomers plotted Proxima Centauri's precise path in the heavens and predicted the two close encounters using data from Hubble.

"Proxima Centauri's trajectory offers a most interesting opportunity because of its extremely close passage to the two stars," said Kailash Sahu, an astronomer with the Space Science Telescope Institute in Baltimore, Md. Sahu leads a team of scientists whose work he presented Monday at the 222nd meeting of in Indianapolis.

Red dwarfs are the most common class of stars in our . Any such star ever born is still shining today. There are about 10 red dwarfs for every star like our sun. Red dwarfs are less massive than other stars. Because lower-mass stars tend to have smaller planets, red dwarfs are ideal places to go hunting for Earth-sized planets.

Previous attempts to detect planets around Proxima Centauri have not been successful. But astronomers believe they may be able to detect smaller , if they exist, by looking for microlensing effects during the two rare stellar alignments.

Microlensing occurs when a foreground star passes close to our line of sight to a more distant . These images of the background star may be distorted, brightened and multiplied depending on the alignment between the foreground lens and the background source.

These microlensing events, ranging from a few hours to a few days in duration, will enable astronomers to measure precisely the mass of this isolated . Getting a precise determination of mass is critical to understanding a star's temperature, diameter, intrinsic brightness, and longevity.

Astronomers will measure the mass by examining images of each of the background stars to see how far the stars are offset from their real positions in the sky. The offsets are the result of Proxima Centauri's gravitational field warping space. The degree of offset can be used to measure Proxima Centauri's mass. The greater the offset, the greater the mass of Proxima Centauri. If the red dwarf has any planets, their gravitational fields will produce a second small position shift.

Because Proxima Centauri is so close to Earth, the area of sky warped by its gravitation field is larger than for more distant stars. This makes it easier to look for shifts in apparent stellar position caused by this effect. However, the position shifts will be too small to be perceived by any but the most sensitive telescopes in space and on the ground. The European Space Agency's Gaia space telescope and the European Southern Observatory's Very Large Telescope on Mt. Cerro Paranal in Chile may be able to make measurements comparable to Hubble's.

To identify possible alignment events, Sahu's team searched a catalog of 5,000 with a high rate of angular motion across the sky and singled out Proxima Centauri. It crosses a section of sky with the apparent width of the full moon as observed from Earth every 600 years.

Explore further: 'Perfect storm' quenching star formation around a supermassive black hole

Related Stories

Earth-sized planet found just outside solar system

Oct 16, 2012

(Phys.org)—European astronomers have discovered a planet with about the mass of the Earth orbiting a star in the Alpha Centauri system—the nearest to Earth. It is also the lightest exoplanet ever discovered ...

The closest star system found in a century

Mar 11, 2013

(Phys.org) —A pair of newly discovered stars is the third-closest star system to the Sun, according to a paper that will be published in Astrophysical Journal Letters. The duo is the closest star system ...

A cool discovery about the Sun's next-door twin

Feb 20, 2013

(Phys.org)—ESA's Herschel space observatory has detected a cool layer in the atmosphere of Alpha Centauri A, the first time this has been seen in a star beyond our own Sun. The finding is not only important ...

How common are earths around small stars?

Jun 03, 2013

(Phys.org) —The Kepler mission has revolutionized the study of exoplanet statistics by increasing the number of known extrasolar planets and planet candidates by a factor of five, and by discovering systems ...

Recommended for you

Kepler proves it can still find planets

9 hours ago

To paraphrase Mark Twain, the report of the Kepler spacecraft's death was greatly exaggerated. Despite a malfunction that ended its primary mission in May 2013, Kepler is still alive and working. The evidence ...

The hot blue stars of Messier 47

Dec 17, 2014

Messier 47 is located approximately 1600 light-years from Earth, in the constellation of Puppis (the poop deck of the mythological ship Argo). It was first noticed some time before 1654 by Italian astronomer ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

El_Nose
5 / 5 (2) Jun 03, 2013
its good to hear about the HST being referenced in studies that will last at least two more years. The gyro's may have issues but that thing is solid science.
cantdrive85
1 / 5 (10) Jun 03, 2013
The movement of Centauri is what it is, due to the parallax effect along with the fact Centauri i traveling in a helical motion. This is what pinches in Birkeland currents do.
Requiem
3 / 5 (8) Jun 04, 2013
The movement of Centauri is what it is, due to the parallax effect along with the fact Centauri i traveling in a helical motion. This is what pinches in Birkeland currents do.


"Because of parallax due to Earth's motion around the sun, the path appears scalloped."

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.