Key link found in Cosmic Distance Ladder

June 20, 2013
Key link found in Cosmic Distance Ladder

(Phys.org) —When observing the bright explosion of a White Dwarf star in our neighbouring galaxy last year, researchers from The Australian National University collected the largest ever data set on what they recognised as one of our best 'standard candles' yet for distance measurements in the Universe.

"We know how a candle of a particular brightness grows fainter as it is moved further away from us. So, if we know the true brightness of the candle (in this instance, supernova SN 2012fr) and we measure its observed brightness, we can then calculate the interceding distance," said Dr Michael Childress.

Supernova SN 2012fr left a which has been analysed by a team of researchers led by Dr Childress from the ANU Research School of and which also includes Professor Brian Schmidt.

Their data shows unprecedented, and quite unusual, layering in the material that was burnt and ejected in the explosion, especially silicon and iron.

Two distinct layers of silicon were found: one thick, outer layer that had faded by the time the supernova reached its peak brightness on 12 November 2012 (16 days after the initial explosion), and one deeper layer that hardly changed for several weeks after the explosion.

"As it turns out, SN 2012fr is not just another supernova but a really interesting case. Since it was discovered within a day of explosion, we were able to study it in greater detail than almost any supernova ever discovered," Dr Childress said.

"Because we know the distance to its (NGC 1365), this supernova actually lets us better calibrate all Type Ia Supernova observations to measure distances in the Universe, using what we call the 'standard candle' technique.

This video is not supported by your browser at this time.
A short research presentation by Dr Childress.

Despite its unusual layers, SN 2012fr appears to still be classified as a so-called 'normal' Type Ia Supernova – which Professor Schmidt used in his winning work to discover Dark Energy – and it also presents a key link in our cosmic distance ladder.

"Our analyses of SN 2012fr will increase the precision of which we can measure distances outside of our own galaxy, as well as improve our understanding of these explosive events and our ability to use them in the hunt for Dark Energy, the source of the accelerated expansion of the Universe," said Dr Childress.

This research is part of 'The Dark Universe' theme of the ARC Centre of Excellence for All-sky Astrophysics, CAASTRO (www.caastro.org) and is published today in The Astrophysical Journal.

Explore further: New study suggests long ago brightest star explosion was rapid type Ia supernova

Related Stories

Spiral beauty graced by fading supernova

March 20, 2013

(Phys.org) —About 35 million light-years from Earth, in the constellation of Eridanus (The River), lies the spiral galaxy NGC 1637. Back in 1999 the serene appearance of this galaxy was shattered by the appearance of a ...

Hubble telescope breaks record for farthest supernova

April 4, 2013

(Phys.org) —The supernova, designated SN UDS10Wil, belongs to a special class of exploding stars known as Type Ia supernovae. These bright beacons are prized by astronomers because they can be used as a yardstick for measuring ...

SN 1006: X-ray view of a thousand-year-old cosmic tapestry

April 17, 2013

(Phys.org) —This year, astronomers around the world have been celebrating the 50th anniversary of X-ray astronomy. Few objects better illustrate the progress of the field in the past half-century than the supernova remnant ...

Astronomers discover light echo from supernova

June 4, 2013

(Phys.org) —Astronomers have discovered light echoing off material surrounding a recent supernova explosion, SN 2009ig. The dust and gas that are reflecting the light are so close to the eruption center that it is likely ...

Recommended for you

Interstellar seeds could create oases of life

August 27, 2015

We only have one example of a planet with life: Earth. But within the next generation, it should become possible to detect signs of life on planets orbiting distant stars. If we find alien life, new questions will arise. ...

Dawn spacecraft sends sharper scenes from Ceres

August 25, 2015

The closest-yet views of Ceres, delivered by NASA's Dawn spacecraft, show the small world's features in unprecedented detail, including Ceres' tall, conical mountain; crater formation features and narrow, braided fractures.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.