Key link found in Cosmic Distance Ladder

Jun 20, 2013
Key link found in Cosmic Distance Ladder

(Phys.org) —When observing the bright explosion of a White Dwarf star in our neighbouring galaxy last year, researchers from The Australian National University collected the largest ever data set on what they recognised as one of our best 'standard candles' yet for distance measurements in the Universe.

"We know how a candle of a particular brightness grows fainter as it is moved further away from us. So, if we know the true brightness of the candle (in this instance, supernova SN 2012fr) and we measure its observed brightness, we can then calculate the interceding distance," said Dr Michael Childress.

Supernova SN 2012fr left a which has been analysed by a team of researchers led by Dr Childress from the ANU Research School of and which also includes Professor Brian Schmidt.

Their data shows unprecedented, and quite unusual, layering in the material that was burnt and ejected in the explosion, especially silicon and iron.

Two distinct layers of silicon were found: one thick, outer layer that had faded by the time the supernova reached its peak brightness on 12 November 2012 (16 days after the initial explosion), and one deeper layer that hardly changed for several weeks after the explosion.

"As it turns out, SN 2012fr is not just another supernova but a really interesting case. Since it was discovered within a day of explosion, we were able to study it in greater detail than almost any supernova ever discovered," Dr Childress said.

"Because we know the distance to its (NGC 1365), this supernova actually lets us better calibrate all Type Ia Supernova observations to measure distances in the Universe, using what we call the 'standard candle' technique.

This video is not supported by your browser at this time.
A short research presentation by Dr Childress.

Despite its unusual layers, SN 2012fr appears to still be classified as a so-called 'normal' Type Ia Supernova – which Professor Schmidt used in his winning work to discover Dark Energy – and it also presents a key link in our cosmic distance ladder.

"Our analyses of SN 2012fr will increase the precision of which we can measure distances outside of our own galaxy, as well as improve our understanding of these explosive events and our ability to use them in the hunt for Dark Energy, the source of the accelerated expansion of the Universe," said Dr Childress.

This research is part of 'The Dark Universe' theme of the ARC Centre of Excellence for All-sky Astrophysics, CAASTRO (www.caastro.org) and is published today in The Astrophysical Journal.

Explore further: Toothpaste fluorine formed in stars

Related Stories

Astronomers discover light echo from supernova

Jun 04, 2013

(Phys.org) —Astronomers have discovered light echoing off material surrounding a recent supernova explosion, SN 2009ig. The dust and gas that are reflecting the light are so close to the eruption center ...

Spiral beauty graced by fading supernova

Mar 20, 2013

(Phys.org) —About 35 million light-years from Earth, in the constellation of Eridanus (The River), lies the spiral galaxy NGC 1637. Back in 1999 the serene appearance of this galaxy was shattered by the ...

Hubble telescope breaks record for farthest supernova

Apr 04, 2013

(Phys.org) —The supernova, designated SN UDS10Wil, belongs to a special class of exploding stars known as Type Ia supernovae. These bright beacons are prized by astronomers because they can be used as a ...

Recommended for you

Toothpaste fluorine formed in stars

9 hours ago

The fluorine that is found in products such as toothpaste was likely formed billions of years ago in now dead stars of the same type as our sun. This has been shown by astronomers at Lund University in Sweden, ...

Swirling electrons in the whirlpool galaxy

Aug 20, 2014

The whirlpool galaxy Messier 51 (M51) is seen from a distance of approximately 30 million light years. This galaxy appears almost face-on and displays a beautiful system of spiral arms.

A spectacular landscape of star formation

Aug 20, 2014

This image, captured by the Wide Field Imager at ESO's La Silla Observatory in Chile, shows two dramatic star formation regions in the Milky Way. The first, on the left, is dominated by the star cluster NGC ...

Exoplanet measured with remarkable precision

Aug 19, 2014

Barely 30 years ago, the only planets astronomers had found were located right here in our own solar system. The Milky Way is chock-full of stars, millions of them similar to our own sun. Yet the tally ...

User comments : 0