Thermal limit for animal life redefined by first lab study of deep-sea vent worms

May 29, 2013

Forty-two may or may not be the answer to everything, but it likely defines the temperature limit where animal life thrives, according to the first laboratory study of heat-loving Pompeii worms from deep-sea vents, published May 29 in the open access journal PLOS ONE by Bruce Shillito and colleagues from the University Pierre and Marie Curie, France.

The worms, named Alvinella pompejana, colonize black smoker chimney walls at deep-, thrive at extremes of temperature and pressure, and have thus far eluded scientists' attempts to bring them to the surface alive for further research. Many previous studies conducted at these sites has suggested the worms may be able to thrive at temperatures of 60 C (140 F) or higher. As Shillito explains, "It is because several previous papers had come to this conclusion that Alvinella had become some sort of thermal exception in the scientific world. Before these studies, it was long agreed that 50 C was the limit at which animal life survived."

In this new study, researchers used a technique that maintains the essential to the worms' survival during their extraction, allowing them to bring Pompeii worms to their labs for testing. They found that prolonged exposure to the 50-55 C range induced lethal tissue damage, revealing that the worms did not experience long-term exposures to temperatures above 50 C in their natural environment. However, their studies found that the temperature optimum for survival of the worms was still well over 42 C, ranking them among the most heat-loving animals known.

Explore further: Microbe Survives in Ocean's Deepest Realm, Thanks to Genetic Adaptations

More information: Ravaux J, Hamel G, Zbinden M, Tasiemski AA, Boutet I, et al. (2013) Thermal Limit for Metazoan Life in Question: In Vivo Heat Tolerance of the Pompeii Worm. PLOS ONE 8(5): e64074. doi:10.1371/journal.pone.0064074

Related Stories

Gut-invading worms turn enemy T cells into friends

September 27, 2010

Intestinal worms sidestep the immune system by inducing the development of suppressive T cells, according to a study published on September 27th in the Journal of Experimental Medicine.

Mystery of 'zombie worm' development unveiled

March 12, 2013

How do bone-eating worms reproduce? A new study by Norio Miyamoto and colleagues from the Japan Agency for Marine-Earth Science and Technology sheds light on this question through a detailed observation of the postembryonic ...

Recommended for you

New gene map reveals cancer's Achilles heel

November 25, 2015

Scientists have mapped out the genes that keep our cells alive, creating a long-awaited foothold for understanding how our genome works and which genes are crucial in disease like cancer.

Study suggests fish can experience 'emotional fever'

November 25, 2015

(—A small team of researchers from the U.K. and Spain has found via lab study that at least one type of fish is capable of experiencing 'emotional fever,' which suggests it may qualify as a sentient being. In their ...

How cells in the developing ear 'practice' hearing

November 25, 2015

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular ...

How cells 'climb' to build fruit fly tracheas

November 25, 2015

Fruit fly windpipes are much more like human blood vessels than the entryway to human lungs. To create that intricate network, fly embryonic cells must sprout "fingers" and crawl into place. Now researchers at The Johns Hopkins ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.