Scientists work out way to use pulsars to provide self navigation to spacecraft in solar system

May 24, 2013 by Bob Yirka report
Artist’s impression of Rosetta, if it navigated in deep space using pulsar signals. The characteristic time signatures of pulsars are used as natural navigation beacons to determine the position and velocity of the spacecraft. Credit: arXiv:1305.4842 [astro-ph.HE]

(Phys.org) —A trio of German space scientists has worked out a way to use pulsars as navigation aids for space vehicles traveling in the solar system. As they describe in their paper uploaded to the preprint server arXiv, the method relies on reading information from at least three pulsars to triangulate location information.

The current method of navigation for spacecraft is to send radio waves back to Earth—scientists can calculate its distance by noting how long the take to reach them. Unfortunately, that doesn't help to figure out its angular position. Generally, that's not a problem, however, because of the vast distances between objects in the solar system—it's likely to become more of an issue in the future, though, as space travel becomes more common. What's needed, scientists say, is a way for spacecraft to keep tabs on their position without assistance from Earth. That's what the team in Germany has done, using pulsars as guides.

Pulsars are strongly magnetized that spin very rapidly. Because they spin, they appear to blink or pulse, hence their name. Scientists have suggested over the years that it might be possible to use them as navigational aids, but until recently, the equipment necessary to read and interpret such signals has been far too bulky to put aboard a space craft. Also, limited knowledge about pulsars has constrained their usefulness. The team from Germany says progress in both areas has now been made to such an extent that it should be possible to put such equipment aboard a capable of keeping track of its position to within 5km.

Pulsars emit two kinds of signals that can be useful, radiation or x-rays. Both are emitted in cycles so precisely timed that they are comparable to . The researchers estimate a reading radiation signals with 21 cm waves, for example, would require an antenna 150 square meters—that's still too big for practical purpose. For that reason, the team suggests a better approach would be to listen for x-rays. Optics have progressed to the point, they say, that a mirror on a space vehicle capable of hearing and interpreting them would weigh just 25 kilograms, small enough for actual use. That would be good enough, they claim, to allow a spacecraft to triangulate its position to within 5km.

Explore further: Exoplanet measured with remarkable precision

More information: Autonomous Spacecraft Navigation With Pulsars, arXiv:1305.4842 [astro-ph.HE] arxiv.org/abs/1305.4842

Abstract
An external reference system suitable for deep space navigation can be defined by fast spinning and strongly magnetized neutron stars, called pulsars. Their beamed periodic signals have timing stabilities comparable to atomic clocks and provide characteristic temporal signatures that can be used as natural navigation beacons, quite similar to the use of GPS satellites for navigation on Earth. By comparing pulse arrival times measured on-board a spacecraft with predicted pulse arrivals at a reference location, the spacecraft position can be determined autonomously and with high accuracy everywhere in the solar system and beyond. The unique properties of pulsars make clear already today that such a navigation system will have its application in future astronautics. In this paper we describe the basic principle of spacecraft navigation using pulsars and report on the current development status of this novel technology.

via ArxivBlog

Related Stories

Dead stars could be the future of spacecraft navigation

Oct 09, 2012

Scientists at the National Physical Laboratory (NPL) and the University of Leicester have been commissioned by the European Space Agency (ESA) to investigate the feasibility of using dead stars to navigate ...

A new way to discover pulsars

May 22, 2012

(Phys.org) -- The Large Area Telescope (LAT), built by SLAC for the Fermi Gamma-ray Space Telescope, collects information on high-energy gamma rays from numerous sources in the sky. Among these are small, ...

Chameleon pulsar baffles astronomers

Jan 24, 2013

A pulsar that is able, without warning, to dramatically change the way in which it shines has been identified by an international team of astronomers.

Recommended for you

Exoplanet measured with remarkable precision

19 hours ago

Barely 30 years ago, the only planets astronomers had found were located right here in our own solar system. The Milky Way is chock-full of stars, millions of them similar to our own sun. Yet the tally ...

New star catalog reveals unexpected 'solar salad'

20 hours ago

(Phys.org) —An Arizona State University alumnus has devised the largest catalog ever produced for stellar compositions. Called the Hypatia Catalog, after one of the first female astronomers who lived in ...

New survey begins mapping nearby galaxies

Aug 18, 2014

A new survey called MaNGA (Mapping Nearby Galaxies at Apache Point Observatory) has been launched that will greatly expand our understanding of galaxies, including the Milky Way, by charting the internal ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

antialias_physorg
5 / 5 (2) May 24, 2013
Heh. Pulsars - nature's GPS. (Or more precisely "CPS": Cosmological Positioning System)
Clever.