Rapid climate change and the role of the Southern Ocean

Apr 08, 2013
ocean

Scientists from Cardiff University and the University of Barcelona have discovered new clues about past rapid climate change.

The research, published this month in the journal Nature Geoscience, concludes that oceanographic reorganisations and biological processes are linked to the supply of airborne dust in the Southern Ocean and this connection played a key role in past rapid fluctuations of levels, an important component in the climate system.

The scientists studied a core from the Southern Ocean and reconstructed at different water depths using stable isotope ratios in the shells of foraminifera, single–celled marine organisms. They found that the chemical difference between intermediate level and deep waters over the last 300,000 years closely resembled the changes in atmospheric carbon dioxide levels and the input of windblown dust.

Dr Martin Ziegler, School of Earth and Ocean Sciences, explained: "The deep ocean is by far the largest pool of available carbon on short timescales. In the Southern Ocean, water from the deep rises to the sea surface and comes in contact with the atmosphere. These waters will release their carbon to the atmosphere unless captures this carbon through photosynthesis and transports it back into the deep when it dies and sinks. The efficiency of this biological activity in the Southern Ocean is thought to depend on the input of nutrients, namely iron, contained in wind blown dust. It is also this efficiency that determines the strength of chemical stratification in the Southern Ocean."

Professor Ian Hall, School of Earth and Ocean Sciences, added: "Our study finds large changes in chemical stratification of the Southern Ocean not only across the shifts from ice ages to warm interglacial conditions, but also on more rapid, millennial timescales. However, changes in dust flux on these short timescales are much smaller. This could suggest that the biological response to a change in dust input is much more sensitive when the dust flux is relatively low such as it is today. This iron fertilization process might be therefore more important than previously thought."

These findings provide an important benchmark for climate modeling studies and more research will be needed to determine the significance and impact of future changes in dust input into the Southern Ocean.

Explore further: NASA sees Tropical Cyclone 15S meandering in Mozambique Channel

Related Stories

Ocean iron and CO2 interaction studied

Apr 26, 2007

A French study suggested that iron supply changes from deep water to the ocean's surface might have a greater effect on atmospheric CO2 than thought.

Ocean iron affects biological productivity: study

Mar 13, 2012

(PhysOrg.com) -- A team of researchers has just published a new paper, lead authored by Boston University Professor of Earth Sciences Richard W. Murray, that provides compelling evidence from marine sediment ...

Recommended for you

Stuck-in-the-mud plankton reveal ancient temperatures

10 hours ago

New research in Nature Communications showing how tiny creatures drifted across the ocean before falling to the seafloor and being fossilised has the potential to improve our understanding of past climat ...

NASA sees Mozambique Channel's new tropical storm

11 hours ago

Tropical Cyclone 15S formed in the Mozambique Channel of the Southern Indian Ocean, and the Global Precipitation Measurement or GPM core satellite gathered data on its rainfall rates.

How rain is dependent on soil moisture

11 hours ago

It rains in summer most frequently when the ground holds a lot of moisture. However, precipitation is most likely to fall in regions where the soil is comparatively dry. This is the conclusion reached by ...

ESA image: Hungarian mosaic

11 hours ago

This image of Hungary, with the political border in white, is a mosaic of 11 scans by Sentinel-1A's radar from October to December 2014.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.