Iowa meteorite crater confirmed

Mar 05, 2013
3-Dimensional view of Decorah, Iowa and the Upper Iowa River. Scene is looking due north. Credit: United States Geological Survey

(Phys.org) —Recent airborne geophysical surveys near Decorah, Iowa are providing an unprecedented look at a 470- million-year-old meteorite crater concealed beneath bedrock and sediments.

The aerial surveys, a collaboration of the U.S. Geological Survey with the Iowa and Minnesota Geological Surveys, were conducted in the last 60 days to map geologic structures and assess the mineral and water resources of the region.

"Capturing images of an impact was a huge bonus," said Dr. Paul Bedrosian, a USGS geophysicist in Denver who is leading the effort to model the recently acquired geophysical data. "These findings highlight the range of applications that these geophysical methods can address."

In 2008-09, geologists from the Iowa Department of Natural Resources' (Iowa DNR) Iowa Geological and Water Survey hypothesized what has become known as the Decorah Impact Structure. The scientists examined water well drill-cuttings and recognized a unique shale unit preserved only beneath and near the city of Decorah. The extent of the shale, which was deposited after the impact by an ancient seaway, defines a "nice circular basin" of 5.5 km width, according to Robert McKay, a geologist at the Iowa Geological Survey.

Shows electro-magnetic, well data and aggregate results. Credit: USGS

Bevan French, a scientist the Smithsonian's , subsequently identified shocked quartz - considered strong evidence of an extra-terrestrial impact - in samples of sub-shale breccia from within the crater.

"The recognition of this buried geological structure was possible because of the collaboration of a local geologist, water well drillers, the USGS STATEMAP program, and the support of the Iowa DNR concerning research on fundamental aspects of Iowa geology," said McKay.

The recent geophysical surveys include an airborne electromagnetic system, which is sensitive to how well rocks conduct electricity, and airborne gravity gradiometry, which measures subtle changes in rock density. The surveys both confirm the earlier work and provide a new view of the Decorah Impact Structure. Models of the electromagnetic data show a crater filled with electrically conductive shale and the underlying breccia, which is rock composed of broken fragments of rock cemented together by a fine-grained matrix.

"The shale is an ideal target and provides the electrical contrast that allows us to clearly image the geometry and internal structure of the crater," Bedrosian said.

More analysis of the data will provide additional detail. These data show the impact as a nearly circular region distinct from the surrounding area to a depth of several hundred meters.

"These data, when coupled with physical property measurements on drill core samples, will form the basis for modeling efforts to constrain the impact geometry and energy of the meteorite," said Dr. Andy Kass, a USGS geophysicist working on the effort.

The Iowa and Minnesota airborne geophysical surveys are targeting an igneous intrusion, known as the Northeast Iowa Igneous Intrusive complex, that may be similar to the Duluth layered igneous complex exposed in the Lake Superior region of northern Minnesota. Known copper, nickel, and platinum group metal resources were deposited during the formation of the Duluth complex. Both of these complexes are associated with a large structural feature known as the Midcontinent Rift, which is exposed in the Lake Superior Region but is covered by younger rocks as it extends to the south through Iowa, Nebraska, Kansas, and Missouri.

This geophysical survey is part of a larger USGS effort to evaluate the concealed mineral resource potential of the greater Midcontinent Rift region that formed about 1.1 billion years ago.

Explore further: NASA air campaigns focus on Arctic climate impacts

Related Stories

Researchers discover new impact crater in the Arctic

Aug 08, 2012

(Phys.org) -- Researchers from the University of Saskatchewan and the Geological Survey of Canada (GSC) have discovered a massive meteor impact from millions of years ago in Canada’s western Arctic.

Recommended for you

Scientists monitoring Hawaii lava undertake risks

21 minutes ago

New photos from the U.S. Geological Survey's Hawaiian Volcano Observatory give a glimpse into the hazardous work scientists undertake to monitor lava that's threatening to cross a major highway.

NASA sees Odile soaking Mexico and southwestern US

11 hours ago

Tropical Storm Odile continues to spread moisture and generate strong thunderstorms with heavy rainfall over northern Mexico's mainland and the Baja California as well as the southwestern U.S. NASA's Tropical ...

NASA sees Tropical Storm Polo intensifying

11 hours ago

Tropical storm warnings now issued for a portion of the Southwestern coast of Mexico as Polo continues to strengthen. Infrared imagery from NASA's Aqua satellite showed powerful thunderstorms around the center ...

User comments : 0