DARPA envisions the future of machine learning

March 20, 2013

Machine learning – the ability of computers to understand data, manage results, and infer insights from uncertain information – is the force behind many recent revolutions in computing. Email spam filters, smartphone personal assistants and self-driving vehicles are all based on research advances in machine learning. Unfortunately, even as the demand for these capabilities is accelerating, every new application requires a Herculean effort. Even a team of specially-trained machine learning experts makes only painfully slow progress due to the lack of tools to build these systems.

The Probabilistic Programming for Advanced Machine Learning (PPAML) program was launched to address this challenge. Probabilistic programming is a new programming paradigm for managing uncertain information. By incorporating it into machine learning, PPAML seeks to greatly increase the number of people who can successfully build machine learning applications and make machine learning experts radically more effective. Moreover, the program seeks to create more economical, robust and powerful applications that need less data to produce more accurate results – features inconceivable with today's technology.

"We want to do for machine learning what the advent of high-level program languages 50 years ago did for the software development community as a whole," said Kathleen Fisher, DARPA program manager.

"Our goal is that future machine learning projects won't require people to know everything about both the domain of interest and machine learning to build useful machine learning applications. Through new probabilistic specifically tailored to probabilistic inference, we hope to decisively reduce the current barriers to machine learning and foster a boom in innovation, productivity and effectiveness."

To familiarize potential participants with the technical objectives of PPAML, DARPA will host a Proposers' Day on Wednesday, April 10, 2013. For details, visit: www.solers.com/BAAinfo-reg/ppaml. Registration closes on Friday, April 5, 2013 at 5 p.m. ET.

The PPAML program is scheduled to run 46 months, with three phases of activity from 2013 to 2017. Fisher believes a successful solution will involve contributions from many areas, including statistics and probabilistic modeling, approximation algorithms, , programming languages, program analysis, compilers, high-performance software, and parallel and distributed computing.

The DARPA Special Notice document describing the specific capabilities sought is available at go.usa.gov/2PhW.

Explore further: Machines that learn better

Related Stories

Machines that learn better

May 18, 2010

(PhysOrg.com) -- In the last 20 years or so, many of the key advances in artificial-intelligence research have come courtesy of machine learning, in which computers learn how to make predictions by looking for patterns in ...

Turing award goes to 'machine learning' expert

March 9, 2011

A Harvard University professor has been awarded a top technology prize for research that has paved the way for computers that more closely mimic how humans think, including the one that won a "Jeopardy!" tournament.

Lifebrowser: Data mining gets (really) personal at Microsoft

March 17, 2012

(PhysOrg.com) -- Microsoft Research is doing research on software that could bring you your own personal data mining center with a touch of Proust for returns. In a recent video, Microsoft scientist Eric Horvitz demonstrated ...

How to engineer intelligence

March 20, 2012

"Do we actually want machines to interact with humans in an emotional way? Will it be possible for them to interact with us?"

Recommended for you

Microsoft describes hard-to-mimic authentication gesture

August 1, 2015

Photos. Messages. Bank account codes. And so much more—sit on a person's mobile device, and the question is, how to secure them without having to depend on lengthy password codes of letters and numbers. Vendors promoting ...

Power grid forecasting tool reduces costly errors

July 30, 2015

Accurately forecasting future electricity needs is tricky, with sudden weather changes and other variables impacting projections minute by minute. Errors can have grave repercussions, from blackouts to high market costs. ...

Netherlands bank customers can get vocal on payments

August 1, 2015

Are some people fed up with remembering and using passwords and PINs to make it though the day? Those who have had enough would prefer to do without them. For mobile tasks that involve banking, though, it is obvious that ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

antialias_physorg
1 / 5 (1) Mar 20, 2013
Email spam filters...

An intelligent algorithm to act as spam filter. I wonder how long it will take for someone to us the same algorithm to circumvent the spam filter.

May the best (anti-)spambot win.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.