Dust dries clouds by gobbling up water vapor: Scientists show how different cloud seeds can influence greenhouse effect

February 26, 2013
Dust particles in the atmosphere can grab enough water vapor available to reduce the amount of ice crystals formed in cirrus clouds causing the cloud to dry out and disappear. Credit: NASA

(Phys.org)—High in the atmosphere, cold and wispy cirrus clouds are the setting for a climate competition. Researchers at Pacific Northwest National Laboratory found that dust particles in the atmosphere can grab enough water vapor available to reduce the overall number of ice crystals formed in those clouds by other particles. Though somewhat scarce, the cloud-drying dust has an impact on Earth's incoming and outgoing energy that results in a net effect to cool the planet.

Unlike thick warm clouds that provide shade and cooling for the Earth, thin cirrus clouds act like an insulating blanket absorbing infrared light radiated from the Earth's warm surface. Scientists are working to better understand how particles such as dust affect these clouds. In this research, they found that dust particles act to reduce the overall number of ice crystals by competing for the water vapor in ice . This results in a net cooling effect of Earth's climate. Their findings have implications for possible dust seeding of cirrus clouds to offset .

The team compared two ice nucleation parameterizations with differing dust efficiencies as ice nuclei in the Community Atmosphere Model version 5 (CAM5). The team tested how cirrus clouds react to dust ice nuclei in ice . Comparing the with site observations from aircraft data obtained in mid-latitudes, researchers found that dust ice nuclei may play an important role in the ice nucleation at these regions at super .

Cirrus clouds can be formed by the homogeneous freezing of sulfate solution droplets at temperatures lower than -37 degrees Celsius in conditions of high relative humidity. However, their findings show that cirrus clouds can also be formed by heterogeneous nucleation on , which produces larger ice crystals that settle down faster and dry out the cloud. These results highlight the importance of quantifying the number concentrations and properties of ice forming particles such as dust in the upper troposphere.

The team will continue to evaluate the representation of these clouds in CAM5 by comparing model results to field observations. With attention to the aerosols' effect on ice particle formation in these clouds, researchers will determine the role aerosols play to influence the Earth's energy budget and water cycle.

Explore further: Aircraft emissions could influence climate change through cloud formation

More information: Liu, X. et al. Sensitivity studies of dust ice nuclei effect on cirrus clouds with the Community Atmosphere Model CAM5. Atmospheric Chemistry and Physics 12, 12061-12079. DOI:10.5194/acp-12-12061-2012

Related Stories

Clouds + Mineral Dust = Rain

August 17, 2010

A team of atmospheric scientists, including Dr. Xiaohong Liu of Pacific Northwest National Laboratory (PNNL), found a critical link between the size of dust particles in clouds and their likelihood to produce rain.

Ice heating up cold clouds

September 21, 2011

In the Arctic, competition within clouds is hot. The small amount of heat released when water vapor condenses on ice crystals in Arctic clouds, which contain both water and ice, determines the cloud's survival, according ...

Recommended for you

Global index proposed to avoid delays on climate policies

August 4, 2015

Professor David Frame, Director of Victoria's Climate Change Research Institute (CCRI), has co-authored a paper published today in the high profile international scientific journal Nature Climate Change. The paper argues ...

Researchers investigate increased ocean acidification

August 3, 2015

The primary cause of global ocean acidification is the oceanic absorption of CO2 from the atmosphere. Although this absorption helps to mitigate some of the effects of anthropogenic climate change, it has resulted in a reduction ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.