Dust dries clouds by gobbling up water vapor: Scientists show how different cloud seeds can influence greenhouse effect

Feb 26, 2013
Dust particles in the atmosphere can grab enough water vapor available to reduce the amount of ice crystals formed in cirrus clouds causing the cloud to dry out and disappear. Credit: NASA

(Phys.org)—High in the atmosphere, cold and wispy cirrus clouds are the setting for a climate competition. Researchers at Pacific Northwest National Laboratory found that dust particles in the atmosphere can grab enough water vapor available to reduce the overall number of ice crystals formed in those clouds by other particles. Though somewhat scarce, the cloud-drying dust has an impact on Earth's incoming and outgoing energy that results in a net effect to cool the planet.

Unlike thick warm clouds that provide shade and cooling for the Earth, thin cirrus clouds act like an insulating blanket absorbing infrared light radiated from the Earth's warm surface. Scientists are working to better understand how particles such as dust affect these clouds. In this research, they found that dust particles act to reduce the overall number of ice crystals by competing for the water vapor in ice . This results in a net cooling effect of Earth's climate. Their findings have implications for possible dust seeding of cirrus clouds to offset .

The team compared two ice nucleation parameterizations with differing dust efficiencies as ice nuclei in the Community Atmosphere Model version 5 (CAM5). The team tested how cirrus clouds react to dust ice nuclei in ice . Comparing the with site observations from aircraft data obtained in mid-latitudes, researchers found that dust ice nuclei may play an important role in the ice nucleation at these regions at super .

Cirrus clouds can be formed by the homogeneous freezing of sulfate solution droplets at temperatures lower than -37 degrees Celsius in conditions of high relative humidity. However, their findings show that cirrus clouds can also be formed by heterogeneous nucleation on , which produces larger ice crystals that settle down faster and dry out the cloud. These results highlight the importance of quantifying the number concentrations and properties of ice forming particles such as dust in the upper troposphere.

The team will continue to evaluate the representation of these clouds in CAM5 by comparing model results to field observations. With attention to the aerosols' effect on ice particle formation in these clouds, researchers will determine the role aerosols play to influence the Earth's energy budget and water cycle.

Explore further: NASA sees Tropical Storm playing polo with western Mexico

More information: Liu, X. et al. Sensitivity studies of dust ice nuclei effect on cirrus clouds with the Community Atmosphere Model CAM5. Atmospheric Chemistry and Physics 12, 12061-12079. DOI:10.5194/acp-12-12061-2012

Related Stories

Ice heating up cold clouds

Sep 21, 2011

In the Arctic, competition within clouds is hot. The small amount of heat released when water vapor condenses on ice crystals in Arctic clouds, which contain both water and ice, determines the cloud's survival, ...

Clouds + Mineral Dust = Rain

Aug 17, 2010

A team of atmospheric scientists, including Dr. Xiaohong Liu of Pacific Northwest National Laboratory (PNNL), found a critical link between the size of dust particles in clouds and their likelihood to produce ...

Recommended for you

NASA catches a weaker Edouard, headed toward Azores

13 hours ago

NASA's Aqua satellite passed over the Atlantic Ocean and captured a picture of Tropical Storm Edouard as it continues to weaken. The National Hurricane Center expects Edouard to affect the western Azores ...

Tree rings and arroyos

Sep 18, 2014

A new GSA Bulletin study uses tree rings to document arroyo evolution along the lower Rio Puerco and Chaco Wash in northern New Mexico, USA. By determining burial dates in tree rings from salt cedar and wi ...

User comments : 0