Physicists create new 3D microchip

Physicists create new 3D microchip
Nature cover. Credit: Image by LindenArtWork

Scientists from the University of Cambridge have created, for the first time, a new type of microchip which allows information to travel in three dimensions. Currently, microchips can only pass digital information in a very limited way - from either left to right or front to back. The research was published today, 31 January, in Nature.

Dr Reinoud Lavrijsen, an author on the paper from the University of Cambridge, said: "Today's chips are like bungalows – everything happens on the same floor. We've created the stairways allowing information to pass between floors."

Researchers believe that in the future a 3D microchip would enable additional storage capacity on chips by allowing information to be spread across several layers instead of being compacted into one layer, as is currently the case.

For the research, the Cambridge scientists used a special type of microchip called a spintronic chip which exploits the electron's tiny or 'spin' (unlike the majority of today's chips which use charge-based ). Spintronic chips are increasingly being used in computers, and it is widely believed that within the next few years they will become the standard memory chip.

To create the microchip, the researchers used an called 'sputtering'. They effectively made a club-sandwich on a of cobalt, platinum and ruthenium atoms. The cobalt and platinum atoms store the digital information in a similar way to how a stores data. The ruthenium atoms act as messengers, communicating that information between neighbouring layers of cobalt and platinum. Each of the layers is only a few atoms thick.

They then used a called MOKE to probe the data content of the different layers. As they switched a magnetic field on and off they saw in the MOKE signal the data climbing layer by layer from the bottom of the chip to the top. They then confirmed the results using a different .

Professor Russell Cowburn, lead researcher of the study from the Cavendish Laboratory, the University of Cambridge's Department of Physics, said: "Each step on our spintronic staircase is only a few atoms high. I find it amazing that by using nanotechnology not only can we build structures with such precision in the lab but also using advanced laser instruments we can actually see the data climbing this nano-staircase step by step.

"This is a great example of the power of advanced materials science. Traditionally, we would use a series of electronic transistors to move data like this. We've been able to achieve the same effect just by combining different basic elements such as cobalt, platinum and ruthenium. This is the 21st century way of building things – harnessing the basic power of elements and materials to give built-in functionality."

More information: The paper 'Magnetic ratchet for 3-dimensional spintronic memory and logic' will be published in the 31 January 2013 edition of Nature: www.nature.com/nature/journal/ … ull/nature11733.html

Journal information: Nature

Citation: Physicists create new 3D microchip (2013, January 30) retrieved 19 March 2024 from https://phys.org/news/2013-01-physicists-3d-microchip.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

First molybdenite microchip

0 shares

Feedback to editors