Seeing stars, finding nukes: Radio telescopes can spot clandestine nuclear tests

Dec 05, 2012 by Pam Frost Gorder

In the search for rogue nukes, researchers have discovered an unlikely tool: astronomical radio telescopes.

Ohio State University researchers previously demonstrated another unlikely tool, when they showed that South Korean GPS stations detected telltale from North Korea's 2009 nuclear test.

Both techniques were born out of the discovery that underground nuclear explosions leave their mark—on the outer reaches of Earth's atmosphere.

Now, working with astronomers at the U.S. (NRL), they have analyzed historical data from the Very Large Array (VLA), a constellation of 27 near Socorro, New Mexico—and discovered that the VLA recorded a very similar pattern of disturbances during the last two American underground , which took place in Nevada in 1992.

Dorota Grejner-Brzezinska, professor of geodetic and geoinformation engineering at Ohio State, said that the new findings help support the notion that GPS systems—and their technological successors, global systems (GNSS)—are viable tools for detecting clandestine nuclear tests around the globe. She added that now is a good time to begin developing the concept.

"With a global availability of permanently tracking GPS networks now extending to GNSS, tremendous amounts of information are becoming available, and the infrastructure is growing," she said. "We have a great opportunity to develop these ideas, and make a tool that will aid the global community."

Grejner-Brzezinska presented the findings in a press conference at the (AGU) meeting on Dec. 4 with study co-authors Jihye Park, a postdoctoral researcher in geodetic and geoinformation engineering at Ohio State, and Joseph Helmboldt, a radio astronomer at NRL. Park presented the research in a lecture at AGU on Dec. 3.

While radio telescopes don't cover the entire globe as do, Helmboldt said that the two technologies complement each other, with telescopes offering higher-resolution measurements over a smaller area.

"The observations we make as radio astronomers are not so different from GPS," he said. "We may be looking up at a distant galaxy instead of down to the Earth, but either way, we're all looking at radio waves traveling through the ionosphere."

The ionosphere is the outermost layer of the atmosphere, which begins approximately 50 miles above the Earth's surface. It contains charged particles that can interfere with radio waves and cause measurement errors in GPS and radio telescopes.

For that reason, both radio astronomers and geodetic scientists routinely monitor the ionosphere in order to detect these errors and compensate for them.

"We're talking about taking the error patterns—basically, the stuff we usually try to get rid of—and making something useful out of it," Grejner-Brzezinska said.

Park, who developed this analysis method to earn her doctoral degree at Ohio State, cited key similarities and differences between the GPS data from the 2009 North Korean nuclear test and the VLA data from the 1992 American tests: one on Sept. 18 named Hunters Trophy, and the other on Sept. 23, named Divider.

The North Korean bomb is believed to have had a yield of about five kilotons. According to the GPS data, the wave front of atmospheric disturbance spread outward from the test site in the village of P'unggye at approximately 540 miles per hour. It reached 11 GPS stations in South Korea, China, Japan, and Russia in that first hour. In contrast, Hunters Trophy and Divider each had yields of 20 kilotons. Each blast created a wave front that quickly covered the 700 miles from the Nevada Test Site to the VLA, with a top speed of approximately 1,500 miles per hour.

"Clearly, the U.S. explosions were much bigger than the North Korean explosion," Park said. "The wave fronts traveled faster, and the amplitudes were higher. There are still details missing from the North Korean test, but we can learn a lot by comparing the two events."

Park will continue this work while she takes a new position at the University of Nottingham starting in January. She's already found that in the North Pacific recorded ionospheric disturbances during the deadly Japanese earthquake of 2011, and she will focus on how to differentiate between earthquake signals and nuclear test signals.

Explore further: Oxygen levels were only 0.1 percent of today's levels for roughly billion years before rise of animals

Related Stories

GPS stations can detect clandestine nuclear tests

Jun 07, 2011

At the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) meeting this week, American researchers are unveiling a new tool for detecting illegal nuclear explosions: the Earth's global positioning system (GPS).

Interfering with the Global Positioning System

Jun 09, 2008

You can't always trust your GPS gadget. As scientists have long known, perplexing electrical activity in the upper atmospheric zone called the ionosphere can tamper with signals from GPS satellites.

Recommended for you

2014 Antarctic ozone hole holds steady

13 hours ago

The Antarctic ozone hole reached its annual peak size on Sept. 11, according to scientists from NASA and the National Oceanic and Atmospheric Administration (NOAA). The size of this year's hole was 24.1 million ...

New study finds oceans arrived early to Earth

16 hours ago

Earth is known as the Blue Planet because of its oceans, which cover more than 70 percent of the planet's surface and are home to the world's greatest diversity of life. While water is essential for life ...

Magma pancakes beneath Lake Toba

16 hours ago

Where do the tremendous amounts of material that are ejected to from huge volcanic calderas during super-eruptions actually originate?

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.