Quantum kisses change the color of nothing

November 7, 2012
The image shows, in an artistic manner, the change in color when a quantum tunnel effect is produced in a subnanometric gap. Credit: Cambridge University

Even empty gaps have a colour. Now scientists have shown that quantum jumps of electrons can change the colour of gaps between nano-sized balls of gold. The new results, published today in the journal Nature, set a fundamental quantum limit on how tightly light can be trapped.

The team from the Universities of Cambridge, the and Paris have combined tour de force experiments with advanced theories to show how light interacts with matter at nanometre sizes. The work shows how they can literally see in action in air at room temperature.

Because in a metal move easily, shining light onto a tiny crack pushes onto and off each crack face in turn, at . The oscillating charge across the gap produces a 'plasmonic' colour for the ghostly region in-between, but only when the gap is small enough.

Team leader Professor Jeremy Baumberg from the University of Cambridge Cavendish Laboratory suggests we think of this like the tension building between a flirtatious couple staring into each other's eyes. As their faces get closer the tension mounts, and only a kiss discharges this energy.

In the new experiments, the gap is shrunk below 1nm (1 billionth of a metre) which strongly reddens the gap colour as the charge builds up. However because electrons can jump across the gap by quantum tunnelling, the charge can drain away when the gap is below 0.35nm, seen as a blue-shifting of the colour. As Baumberg says, "It is as if you can kiss without quite touching lips."

Matt Hawkeye, from the experimental team at Cambridge, said: "Lining up the two nano-balls of gold is like closing your eyes and touching together two needles strapped to the end of your fingers. It has taken years of practise to get good at it."

Prof Javier Aizpurua, leader of the theoretical team from San Sebastian complains: "Trying to model so many electrons oscillating inside the gold just cannot be done with existing theories." He has had to fuse classical and quantum views of the world to even predict the colour shifts seen in experiment.

The new insights from this work suggest ways to measure the world down to the scale of single atoms and molecules, and strategies to make useful tiny devices.

Explore further: Nano antenna concentrates light: Intensity increases 1,000-fold

More information: The paper 'Capturing the Quantum Regime in Tunneling Plasmonics' will be published in the 07 November edition of Nature. doi:10.1038/nature11653

Related Stories

Two graphene layers may be better than one

April 27, 2011

(PhysOrg.com) -- Researchers at the National Institute of Standards and Technology have shown that the electronic properties of two layers of graphene vary on the nanometer scale. The surprising new results reveal that not ...

Seeing quantum mechanics with the naked eye

January 9, 2012

(PhysOrg.com) -- A Cambridge team have built a semiconductor chip that converts electrons into a quantum state that emits light but is large enough to see by eye. Because their quantum superfluid is simply set up by shining ...

Physicists confine electrons inside nano-pyramids

September 28, 2012

(Phys.org)—Quantum dots are nanostructures of semiconducting materials that behave a lot like single atoms and are very easy to produce. Given their special properties, researchers see huge potential for quantum dots in ...

Recommended for you

'Material universe' yields surprising new particle

November 25, 2015

An international team of researchers has predicted the existence of a new type of particle called the type-II Weyl fermion in metallic materials. When subjected to a magnetic field, the materials containing the particle act ...

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...

Exploring the physics of a chocolate fountain

November 24, 2015

A mathematics student has worked out the secrets of how chocolate behaves in a chocolate fountain, answering the age-old question of why the falling 'curtain' of chocolate surprisingly pulls inwards rather than going straight ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.