Sound bullets in water

Nov 19, 2012

Sound waves are commonly used in applications ranging from ultrasound imaging to hyperthermia therapy, in which high temperatures are induced, for example, in tumors to destroy them. In 2010, researchers at Caltech led by Chiara Daraio, a professor of aeronautics and applied physics, developed a nonlinear acoustic lens that can focus high-amplitude pressure pulses into compact "sound bullets." In that initial work, the scientists demonstrated how sound bullets form in solids. Now, they have done themselves one better, creating a device that can form and control those bullets in water.

The nonlinear acoustic lens is constructed from chains strung with stainless-steel spheres that are oriented parallel to one another—and squeezed together—to form an array. The gadget was inspired by Newton's cradle, a popular toy that consists of a line of identical balls suspended by wires from a frame. When an end ball is pulled back and released, it slams into the next ball, causing the last ball in the line to fly outward. Similarly, in the acoustic lens, striking one end of the array generates compact nonlinear pulses of sound— that propagate through the lens and can be tightly focused on a target area; when they coalesce at this focal point, they produce a significantly amplified version: the sound bullet. These intense may be used to obliterate tumors or —leaving surrounding tissues unharmed—or probe objects like or bridges for unseen defects.

In the new work, the lens has been made more accurate, and a waterproof interface, which efficiently transmitted the pulses, was inserted between the chains and water. "We use water as a target medium with the idea that the acoustic lens could be used for underwater imaging and/or biomedical applications," says postdoc Carly Donahue, who helped refine the device.

"Currently, our work is fundamental in nature. We are focused on demonstrating proof of principle and establishing the technical strengths and weaknesses, which will inform the future design of engineering devices for specific applications," she adds. "For example, using these systems in biomedical applications requires reducing their dimensions and learning about the related scaling effects. Creating commercially viable devices will require the involvement of industrial partners."

Explore further: Study details laser pulse effects on behavior of electrons

More information: Donahue discusses the technology and its potential applications in a talk at the APS Division of Fluid Dynamics Meeting, which will take place November 18-20, 2012 at the San Diego Convention Center, located near the historic Gaslamp District on the waterfront, in San Diego, California. The talk, "An Experimental Study of a Nonlinear Acoustic Lens Interfaced with Water," is at 4:45 pm on Sunday, November 18, 2012, in Room 30E. meeting.aps.org/Meeting/DFD12/APS_epitome

Related Stories

Caltech researchers create 'sound bullets'

Apr 21, 2010

Taking inspiration from a popular executive toy ("Newton's cradle"), researchers at the California Institute of Technology have built a device -- called a nonlinear acoustic lens -- that produces highly focused, high-amp ...

Coke cans focus sound waves beyond the diffraction limit

Jul 12, 2011

(PhysOrg.com) -- When trying to focus sound waves into as small an area as possible, scientists run into a fundamental limit called the diffraction limit. That is, when sound waves are focused into a region ...

Lasers generate underwater sound

Sep 04, 2009

Scientists at the Naval Research Laboratory (NRL) are developing a new technology for use in underwater acoustics. The new technology uses flashes of laser light to remotely create underwater sound. The new ...

Recommended for you

Particles, waves and ants

11 hours ago

Animals looking for food or light waves moving through turbid media – astonishing similarities have now been found between completely different phenomena.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.