The Helix nebula: Bigger in death than life

Oct 04, 2012 by Whitney Clavin
A dying star is throwing a cosmic tantrum in this combined image from NASA's Spitzer Space Telescope and the Galaxy Evolution Explorer (GALEX), which NASA has lent to the California Institute of Technology in Pasadena. In death, the star's dusty outer layers are unraveling into space, glowing from the intense ultraviolet radiation being pumped out by the hot stellar core. Credit: NASA/JPL-Caltech

(Phys.org)—A dying star is refusing to go quietly into the night, as seen in this combined infrared and ultraviolet view from NASA's Spitzer Space Telescope and the Galaxy Evolution Explorer (GALEX), which NASA has lent to the California Institute of Technology in Pasadena. In death, the star's dusty outer layers are unraveling into space, glowing from the intense ultraviolet radiation being pumped out by the hot stellar core.

This object, called the , lies 650 light-years away in the constellation of Aquarius. Also known by the catalog number NGC 7293, it is a typical example of a class of objects called planetary nebulae. Discovered in the 18th century, these cosmic works of art were erroneously named for their resemblance to gas-giant planets.

Planetary nebulae are actually the remains of stars that once looked a lot like our sun. These stars spend most of their lives turning hydrogen into helium in massive runaway nuclear fusion reactions in their cores. In fact, this process of fusion provides all the light and heat that we get from our sun. Our sun will blossom into a when it dies in about five billion years.

When the hydrogen fuel for the fusion reaction runs out, the star turns to helium for a fuel source, burning it into an even heavier mix of carbon, nitrogen and oxygen. Eventually, the helium will also be exhausted, and the star dies, puffing off its outer gaseous layers and leaving behind the tiny, hot, dense core, called a white dwarf. The white dwarf is about the size of Earth, but has a mass very close to that of the original star; in fact, a teaspoon of a white dwarf would weigh as much as a few elephants!

The from the white dwarf heats up the expelled layers of gas, which shine brightly in the infrared. GALEX has picked out the ultraviolet light pouring out of this system, shown throughout the nebula in blue, while Spitzer has snagged the detailed of the dust and gas in red, yellow and green. Where red Spitzer and blue GALEX data combine in the middle, the nebula appears pink. A portion of the extended field beyond the nebula, which was not observed by Spitzer, is from NASA's all-sky Wide-field Infrared Survey Explorer (WISE). The white dwarf star itself is a tiny white pinprick right at the center of the nebula.

Explore further: Two families of comets found around nearby star Beta Pictoris

More information: More information about Spitzer is online at spitzer.caltech.edu and www.nasa.gov/spitzer . More information about GALEX is at www.galex.caltech.edu .

Related Stories

A cosmic inkblot test

Aug 11, 2011

(PhysOrg.com) -- If this were an inkblot test, you might see a bow tie or a butterfly depending on your personality. An astronomer would likely see the remains of a dying star scattered about space -- precisely ...

The Colorful Demise of a Sun-Like Star

Feb 13, 2007

This image, taken by NASA's Hubble Space Telescope, shows the colorful "last hurrah" of a star like our Sun. The star is ending its life by casting off its outer layers of gas, which formed a cocoon around ...

The Last Confessions of a Dying Star

Mar 04, 2008

Probing a glowing bubble of gas and dust encircling a dying star, NASA's Hubble Space Telescope reveals a wealth of previously unseen structures.

The Helix Nebula in new colors

Jan 19, 2012

(PhysOrg.com) -- ESO's VISTA telescope, at the Paranal Observatory in Chile, has captured a striking new image of the Helix Nebula. This picture, taken in infrared light, reveals strands of cold nebular gas ...

Image: A chameleon sky

Sep 03, 2010

The sands of time are running out for the central star of this the Hourglass Nebula.

One Star's Life Ends With A Ring

Aug 19, 2004

A new image from NASA's Spitzer Space Telescope shows the shimmering embers of a dying star, and in their midst a strange doughnut-shaped ring. "Spitzer's infrared vision has revealed what could not be seen before - a m ...

Recommended for you

New window on the early Universe

19 hours ago

Scientists at the Universities of Bonn and Cardiff see good times approaching for astrophysicists after hatching a new observational strategy to distill detailed information from galaxies at the edge of ...

Chandra's archives come to life

21 hours ago

Every year, NASA's Chandra X-ray Observatory looks at hundreds of objects throughout space to help expand our understanding of the Universe. Ultimately, these data are stored in the Chandra Data Archive, ...

New robotic telescope revolutionizes the study of stars

22 hours ago

In the last 8 months a fully robotic telescope in Tenerife has been carrying out high-precision observations of the motion of stellar surfaces. The telescope is the first in the SONG telescope network and ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

cantdrive85
1 / 5 (4) Oct 04, 2012
As usual, describing the behavior of plasma with mechanical interactions, contrary to all laboratory experimentation and observation. Whoever calls astrophysics an "applied" science are clearly unaware of how to apply the appropriate laws and when/where to apply them.
Fleetfoot
not rated yet Oct 07, 2012
Since the mechanical effects dominate in this case, it is appropriate. If there were significant magnetic fields involved, the situation might be different. You need to learn to discriminate instead of blindly preaching your religion all the time.