Strengthening fragile forests of carbon nanotubes for new MEMS applications

Oct 26, 2012

Microelectromechanical systems (MEMS) are incredibly tiny devices, often built on the scale of millionths of a meter. Conventional MEMS structures tend to be made out of silicon-based materials familiar to the micro-electronics industry, but this ignores a suite of useful materials such as other semiconductors, ceramics, and metals. By using a variety of materials not commonly associated with MEMS technology, a team from Brigham Young University (BYU) in Provo, Utah has created stronger microstructures that can form precise, tall and narrow 3-D shapes – characteristics that were never before possible in MEMS. The researchers will present their latest findings at the AVS 59th International Symposium and Exhibition, held Oct. 28 – Nov. 2, in Tampa, Fla.

To break the MEMS materials barrier, the researchers devised a new production process called templated microfabrication (CNT-M). It uses patterned, vertically aligned carbon nanotube arrays called forests as a 3-D scaffold. With this scaffold, the researchers can create precise, tall and fine-featured . But the forests are extremely fragile. To make them hardier the team replaced the air spaces between the carbon nanotubes with a filler material by atomistic deposition.

The team has used their new CNT-M framework to fabricate metal components from tungsten, molybdenum and nickel. These metals provide desirable properties for MEMS applications and components, including high electrical and , high melting temperatures, resistance to corrosion, low thermal expansion and hardness.

The BYU team's advances open the door for manipulating matter in novel ways that optimize efficiency, performance and cost across a range of fields, including medicine, imaging, computing, materials synthesis, chemical synthesis, and printing. Most biological and biomedical processes occur at the nanoscale. Developing models and templates at this scale enables scientists to interact with, control and leverage the unusual physical, chemical, mechanical, and optical properties of materials in naturally tiny systems.

Already, the BYU researchers have successfully used their new technique to make chemical detection devices that can validate chemical reactions during pharmaceutical production. Team member Robert C. Davis, PhD , imagines that one day CNT-M might even play a role in devising new longer-lasting batteries.

Explore further: Pressure probing potential photoelectronic manufacturing compound

Related Stories

Modern ceramics help advance technology

May 08, 2008

Many important electronic devices used by people today would be impossible without the use of ceramics. A new study published in the Journal of the American Ceramic Society illustrates the use of ceramic materials in the ...

Three new standards for MEMS devices

Jul 16, 2004

Researchers at the National Institute of Standards and Technology (NIST), along with their colleagues at several companies, are completing experiments that validate new standards aimed at improving emerging new microelectromechanical ...

Microtechnology: An alignment assignment

Jan 21, 2011

Microelectromechanical systems (MEMS), which consist of tiny moving parts driven by electrical signals, have found ready applications in optical communication systems. They are attractive in part because they ...

Physicists grow micro-machines from carbon

Mar 09, 2011

(PhysOrg.com) -- A Brigham Young University physics student and his professor had some fun with their new method of growing tiny machines from carbon molecules.

Recommended for you

Light pulses control graphene's electrical behavior

6 hours ago

Graphene, an ultrathin form of carbon with exceptional electrical, optical, and mechanical properties, has become a focus of research on a variety of potential uses. Now researchers at MIT have found a way to control how ...

A new way to make microstructured surfaces

Jul 30, 2014

A team of researchers has created a new way of manufacturing microstructured surfaces that have novel three-dimensional textures. These surfaces, made by self-assembly of carbon nanotubes, could exhibit a ...

User comments : 0