Anti-flu proteins work as designed, researchers confirm

Oct 02, 2012 by Lori Ann White
SSRL is aiding in the computational design of anti-flu proteins. Credit: Nikola Stojanovic/SSRL

(Phys.org)—Understanding why proteins interact with certain specific molecules and not with the myriad others in their environment is a major goal of molecular biology. Now, in a series of recent papers, researchers describe how they designed proteins from scratch to have a high affinity and high specificity for targets on flu viruses, and then validated the two best designs using X-ray diffraction data collected at the Stanford Synchrotron Radiation Lightsource (SSRL).

The validated proteins are now being developed as potential therapeutics against a wide range of health-threatening . If successful, this would mark the first example of proteins with therapeutic applications being designed using a computational model, rather than starting from observations of their natural activity in the laboratory – a processed termed de novo in biology and chemistry.

Nobel Prize-winning chemist Linus Pauling had suggested in the 1940s that a combination of many weak and nonspecific interactions, such as hydrogen bonding and , underlies the highly specific affinities between some molecules.

Following on that insight, a team led by David Baker of the University of Washington used massively parallel computing to virtually sift through numerous configurations of more than 800 natural proteins in search of a few configurations predicted to interact weakly with the target, a protein that enables flu viruses to attach to and invade cells lining the human respiratory tract.

A total of 88 of the computer-designed  proteins were produced in the lab, and further experiments isolated two of them that bound specifically to the target site. After additional optimization, the two proteins were shown to bind to the Spanish and versions of the flu with very high affinity. They also blocked the replication of H1N1 flu viruses in human cell cultures. What's more, studies at the SSRL showed that the structural details of the binding between these two designed proteins and Spanish flu protein were virtually indistinguishable from those designed in the computer, providing crucial atomic-level validation for the computational methods.

The team also made significant breakthroughs in understanding the design principles of natural functional sites while developing the computational methods they used to design their interactions.

Explore further: Dead feeder cells support stem cell growth

Related Stories

Detecting flu viruses in remote areas of the world

Jul 14, 2008

Researchers in Ohio and New Mexico are reporting an advance in the quest for a fast, sensitive test to detect flu viruses — one that requires no refrigeration and can be used in remote areas of the world ...

Building molecular 'cages' to fight disease

Jul 05, 2012

(Phys.org) -- Researchers at the University of Washington in Seattle and the University of California, Los Angeles (UCLA) have developed a computational approach to designing specialized proteins that assemble themselves ...

Recommended for you

Dead feeder cells support stem cell growth

Apr 24, 2015

Stem cells naturally cling to feeder cells as they grow in petri dishes. Scientists have thought for years that this attachment occurs because feeder cells serve as a support system, providing stems cells ...

Improving accuracy in genome editing

Apr 23, 2015

Imagine a day when scientists are able to alter the DNA of organisms in the lab in the search for answers to a host of questions. Or imagine a day when doctors treat genetic disorders by administering drugs ...

Drug research enhanced by fragment screening libraries

Apr 22, 2015

Generation of fragment screening libraries could enhance the analysis and application of natural products for medicinal chemistry and drug discovery, according to Griffith University's Professor Ronald Quinn.

Decoding the cell's genetic filing system

Apr 22, 2015

A fully extended strand of human DNA measures about five feet in length. Yet it occupies a space just one-tenth of a cell by wrapping itself around histones—spool-like proteins—to form a dense hub of ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.