Sorghum eyed as a southern bioenergy crop

Sep 17, 2012 by Jan Suszkiw
Sorghum eyed as a southern bioenergy crop
ARS researchers are developing ways to improve sorghum's potential as a source for biofuel, including crossbreeding cultivated sorghum with an African sorghum bicolor species. Photo courtesy of Richard Old, XID Services, Inc., Bugwood.org

Sweet sorghum is primarily grown in the United States as a source of sugar for syrup and molasses. But the sturdy grass has other attributes that could make it uniquely suited to production as a bioenergy crop, U.S. Department of Agriculture (USDA) studies suggest.

Sorghum is an ideal candidate because of its , adaptability to diverse growing conditions, low requirements, and high biomass (plant material) content, according to Scott Sattler and collaborator Jeff Pedersen with USDA's Agricultural Research Service (ARS). It also produces soluble sugar that can be converted to biofuel. Residual fibers left over from the juice extraction process also can be burned to generate electricity.

Sattler and Pedersen's studies of sorghum are part of a larger effort by ARS—USDA's principal intramural scientific research agency—to answer a government mandate calling for the production of up to 36 billion gallons of biofuel by 2022. Approximately 15 billion gallons of that total will come from grain ethanol, with the remaining 21 billion gallons to come from other sources, or "feedstocks," including sorghum, sugarcane, other grasses like switchgrass, and oilseed crops like rapeseed and soybean.

Sorghum and sugarcane are top candidates for production in the southeastern United States because they are complementary crops that can extend the biofuel production season and utilize the same equipment, note Sattler and Pedersen, who work at the ARS Grain, Forage and Bioenergy Research Unit in Lincoln, Neb. However, they are not the only team examining 's energy potential.

At the ARS and Unit in Tifton, Ga., geneticist William Anderson and his colleagues are working to identify desirable sweet sorghum genes and their functions so improved varieties can be developed. In studies, they selected 117 genotypes from the ARS sorghum germplasm collection at Griffin, Ga., and evaluated them for their ability to mature quickly and resist fall armyworms and the fungal disease anthracnose.

Explore further: Improving the productivity of tropical potato cultivation

More information: Read more about this and other bioenergy research in the September 2012 issue of Agricultural Research magazine.

add to favorites email to friend print save as pdf

Related Stories

Growing sorghum for biofuel

Nov 10, 2010

Conversion of sorghum grass to ethanol has increased with the interest in renewable fuel sources. Researchers at Iowa State University examined 12 varieties of sorghum grass grown in single and double cropping systems. The ...

Versatile compound examined in crops

Aug 02, 2011

Detergent-like compounds called saponins are best known for their cleansing properties, but U.S. Department of Agriculture (USDA) scientists are studying these compounds' potential for helping protect plants from insect attack.

OSU 'sweet' biofuels research goes down on the farm

Aug 29, 2007

Oklahoma State University’s sorghum-related biofuels research is taking a localized approach, with the aim of making possible the effective production of ethanol in the farmer’s own field.

Recommended for you

Building better soybeans for a hot, dry, hungry world

10 hours ago

(Phys.org) —A new study shows that soybean plants can be redesigned to increase crop yields while requiring less water and helping to offset greenhouse gas warming. The study is the first to demonstrate ...

Gene removal could have implications beyond plant science

11 hours ago

(Phys.org) —For thousands of years humans have been tinkering with plant genetics, even when they didn't realize that is what they were doing, in an effort to make stronger, healthier crops that endured climates better, ...

Chrono, the last piece of the circadian clock puzzle?

Apr 15, 2014

All organisms, from mammals to fungi, have daily cycles controlled by a tightly regulated internal clock, called the circadian clock. The whole-body circadian clock, influenced by the exposure to light, dictates the wake-sleep ...

User comments : 0

More news stories

Chimpanzees prefer firm, stable beds

Chimpanzees may select a certain type of wood, Ugandan Ironwood, over other options for its firm, stable, and resilient properties to make their bed, according to a study published April 16, 2014 in the open-access ...

For cells, internal stress leads to unique shapes

From far away, the top of a leaf looks like one seamless surface; however, up close, that smooth exterior is actually made up of a patchwork of cells in a variety of shapes and sizes. Interested in how these ...

Down's chromosome cause genome-wide disruption

The extra copy of Chromosome 21 that causes Down's syndrome throws a spanner into the workings of all the other chromosomes as well, said a study published Wednesday that surprised its authors.

IBM posts lower 1Q earnings amid hardware slump

IBM's first-quarter earnings fell and revenue came in below Wall Street's expectations amid an ongoing decline in its hardware business, one that was exasperated by weaker demand in China and emerging markets.