Less wear, longer life for memory storage device

Sep 12, 2012

Probe storage devices read and write data by making nanoscale marks on a surface through physical contact. The technology may one day extend the data density limits of conventional magnetic and optical storage, but current probes have limited lifespans due to mechanical wear.

A research team, led by Intel Corp., has now developed a long-lasting ultrahigh-density probe storage device by coating the tips of the probes with a thin metal film.

The team's device features an array of 5,000 ultrasharp probes that is integrated with on-chip electronic circuits.

The probes write tiny bits of memory as small as a few nanometers by sending short to a ferroelectric film, a material that can be given a permanent by applying an electric field. High-speed data access requires that the probes slide quickly and frequently across the film.

To prevent tip wear, which can seriously degrade the write-read resolution of the device, the researchers deposited a thin metal film of hafnium diboride (HfB2) on the probe tips.

As the researchers describe in the ' journal , the metal film reduces wear and enables the probe tips to retain their write-read resolution at high speeds for distances exceeding 8 kilometers – greatly increasing the device's lifetime.

The data densities of the device exceed 1 Terabit per square inch. The work is an important step toward the commercialization of a probe-based storage technology with capacities that exceed those of hard disk and solid-state drives.

Explore further: Thin film produces new chemistry in 'nanoreactor'

More information: "Hard HfB2 tip-coatings for ultrahigh density probe-based storage," is published in Applied Physics Letters. apl.aip.org/resource/1/applab/v101/i9/p091909_s1

add to favorites email to friend print save as pdf

Related Stories

World record data density for ferroelectric recording

Aug 17, 2010

Scientists at Tohoku University in Japan have recorded data at a density of 4 trillion bits per square inch, which is a world record for the experimental "ferroelectric" data storage method. As described the journal Applied Ph ...

Structural consequences of nanolithography

Aug 11, 2011

(PhysOrg.com) -- Users from the University of Wisconsin-Madison and the Center for Nanophase Materials Science, working with the X-Ray Microscopy Group, have discovered structural effects accompanying the ...

Recommended for you

Thin film produces new chemistry in 'nanoreactor'

Nov 19, 2014

Physicists of the University of Groningen and the FOM Foundation, led by professor Beatriz Noheda, have discovered a new manganese compound that is produced by tension in the crystal structure of terbium manganese oxide. ...

Billions of 'nanoreactors' inform materials design

Nov 18, 2014

Imagine building a chemical reactor small enough to study nanoparticles a billionth of a meter across. A billion times smaller than a raindrop is the volume of an E. coli cell. And another million times smaller ...

When science and art produce nanosculpture marvels

Nov 18, 2014

(Phys.org) —Quite a claim: a sculpture as the smallest creation of the human form in history. The sculptor, Jonty Hurwitz, said he loves the Internet. That is because, since the nanosculpture exhibit launch, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.