New cranial neural crest cell line developed

Sep 19, 2012
©2012, Mary Ann Liebert Inc., publishers

Researchers have successfully developed a stable population of neural crest cells derived from mice that can be grown in large quantities in the laboratory and that demonstrates the potential to develop into many different cell types needed throughout the body. This powerful new research tool for understanding stem cell biology and human development and disease is described in an article published in Stem Cells and Development.

Mamoru Ishii and colleagues from University of Southern California, Los Angeles, and California Institute of Technology, Pasadena, CA, present their work leading to the development of two neural crest cell lines with stem cell characteristics in the article "A Stable Cranial Neural Crest Cell Line from Mouse." The 09-1 cell line is capable of differentiating into four main cell types: bone, muscle, brain, and cartilage/connective tissue.

"This exciting report is the first to characterize cranial neural crest cell lines isolated from the , which definitively demonstrate multipotency and long-term propagation," says Editor-in-Chief Graham C. Parker, PhD, research professor, Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine.

Explore further: New 3-D method improves the study of proteins

Related Stories

What decides neural stem cell fate?

May 05, 2011

Researchers at Sanford-Burnham Medical Research Institute and their collaborators found that expression of a gene called SOX2 maintains the potential for neural crest stem cells to become neurons in the peripheral nervous ...

New study hopeful on neural stem cells

Aug 05, 2006

Neural stem cells derived from federally approved human embryonic cells are inferior to stem cells derived from donated fetal tissue, a new study found.

Recommended for you

New 3-D method improves the study of proteins

18 hours ago

Researchers have developed a new computational method called AGGRESCAN3D which will allow studying the 3D structure of folded globular proteins and substantially improve the prediction of any propensity for ...

Micro fingers for arranging single cells

Apr 24, 2015

Functional analysis of a cell, which is the fundamental unit of life, is important for gaining new insights into medical and pharmaceutical fields. For efficiently studying cell functions, it is essential ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.