Biologists uncover dynamic between biological clock and neuronal activity

September 25, 2012

Biologists at New York University have uncovered one way that biological clocks control neuronal activity—a discovery that sheds new light on sleep-wake cycles and offers potential new directions for research into therapies to address sleep disorders and jetlag.

"The findings answer a significant question—how biological clocks drive the activity of clock neurons, which, in turn, regulate behavioral rhythms," explained Justin Blau, an associate professor in NYU's Department of Biology and the study's senior author.

Their findings appear in the Journal of Biological Rhythms.

Scientists have known that our biological clocks control . But not previously understood is how this process occurs—that is, how does information from biological clocks drive rhythms in the electrical activity of pacemaker neurons that, in turn, drives daily rhythms?

To understand this mechanism, the researchers examined the biological, or circadian, clocks of Drosophila , which are commonly used for research in this area. Earlier studies of "" in fruit flies allowed the identification of similarly functioning genes in humans.

In their study, the researchers focused on eight master pacemaker neurons located in the central brain—these neurons set the timing of the daily transitions between sleep and wake in the fly. Specifically, they were able to isolate these neurons from animals and identify sets of genes differentially expressed between dawn and dusk.

In a series of follow-up experiments, they concentrated on one gene, Ir, whose expression was found to be much higher at dusk than at dawn and much more highly expressed in pacemaker neurons than in the rest of the brain. Ir encodes a potassium channel that helps set the resting state of neurons – and so its rhythmic expression makes it an excellent candidate to help link the to pacemaker . High levels of Ir expression at dusk should make it much harder for pacemaker neurons to signal than the low levels seen at dawn, a finding that fits with earlier studies showing that pacemaker neurons fire more at dawn than at dusk.

The authors also found that genetic manipulations that either increase or decrease Ir levels affect behavioral rhythms. Perhaps more interestingly, these were also associated with changes in the timing and strength of oscillations in the core clock.

"Biology is never as simple as we imagine it will be," explained Blau. "We were looking for an output of the biological clock that would link the core clock to neuronal activity. Ir seems to do this, but it also, remarkably, feeds back to regulate the core clock itself. Feedback loops seem to be deeply engrained into the biological clock and presumably help these clocks work so well."

Explore further: Separating morning and evening in the circadian clock of mammals

Related Stories

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

4 million years at Africa's salad bar

August 3, 2015

As grasses grew more common in Africa, most major mammal groups tried grazing on them at times during the past 4 million years, but some of the animals went extinct or switched back to browsing on trees and shrubs, according ...

A look at living cells down to individual molecules

August 3, 2015

EPFL scientists have been able to produce footage of the evolution of living cells at a nanoscale resolution by combining atomic force microscopy and an a super resolution optical imaging system that follows molecules that ...

New lizard named after Sir David Attenborough

August 3, 2015

A research team led by Dr Martin Whiting from the Department of Biological Sciences recently discovered a beautifully coloured new species of flat lizard, which they have named Platysaurus attenboroughi, after Sir David Attenborough.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.