Optical fibers in materials: an artificial nervous system

August 29, 2012 by Sarah Perrin
Optical fibers in materials: an artificial nervous system
When placed inside a material, optical fibers act like artificial nerves, transmitting valuable information about a structure’s state of fatigue and wear. A new technique developed at EPFL makes it possible to collect this data with vastly improved resolution and efficiency, opening up the possibility of new applications, particularly in much smaller objects.

(Phys.org)—When placed inside a material, optical fibers act like artificial nerves, transmitting valuable information about a structure's state of fatigue and wear. A new technique developed at EPFL makes it possible to collect this data with vastly improved resolution and efficiency, opening up the possibility of new applications, particularly in much smaller objects.

What if one day our cars or vacuum cleaners could warn us when they're on the verge of wearing out? EPFL's Group for (GFO) has just made an important step in this direction. In the context of monitoring infrastructures such as bridges, dams and buildings, the GFO has developed a technology that improves the resolution of measurements taken by optical fibers embedded in these structures. This discovery, recently published in the journal Laser & Photonics Reviews, opens up possible new applications for optical fibers, particularly in smaller objects.

Up to this point, data could be collected from points about one meter apart using optical fibers, thin glass threads embedded in the concrete of a construction. But now, can be taken as much as every centimeter – a hundredfold improvement in precision. "Right now, we're mainly measuring changes in temperature and force, but this method should eventually also make it possible to measure pressure variations, or even variations in magnetic field," predicts GFO director Luc Thévenaz.

With this improvement, the fiber can act as a true artificial . It would be able to signal the presence of "hot spots", weaknesses, deformations or liquid or gas leakages much more reliably, significantly improving our ability to monitor large infrastructures.

Follow the vibration…

Placed in certain environments, such as underground, this method provides a means of detecting terrain movements or preventing the malfunction of geothermal energy installations. Placed in a glacier, it could provide information on the evolution of the snow pack. Joint research with EPFL's Environmental Fluid Mechanics Laboratory (EFLUM) has been initiated with this objective in mind.

Above all, this new technology makes it possible to use optical fibers in smaller objects, such as robots, household appliances, or skis. It has been proposed to ride aboard the arms of a new project underway in EPFL's Space Center, "Clean Space One," a small satellite designed for cleaning up space debris floating in near Earth orbit.

From a practical viewpoint, the system puts the fiber into "resonance" by sending, via laser, a beam of light to each end of the fiber. These waves of light generate acoustic vibrations, whose pitch change as a function of temperature. Thus the vibrations reveal valuable information about the temperature in the area surrounding the fiber. By recording the data, the scientists can locate hot spots or unusual forces. "The advantage of this technique," says Thévenaz, "is that it allows us to collect data at a very precise, pre-determined point."

Explore further: Optical fiber transmission quality can now be tested without the need to take measurements at both ends

Related Stories

Development of world's highest-density optical fiber cable

July 4, 2012

Nippon Telegraph and Telephone Corporation has developed the world’s highest-density multi-fiber optical fiber cable for outdoor optical fiber networks. NTT Access Network Service Systems Laboratories (NTT Labs) succeeded ...

Researchers make optical fibers from common materials

August 13, 2012

Clemson researchers are taking common materials to uncommon places by transforming easily obtainable and affordable materials into fiber. Their findings are published in Nature Photonics, the world's top journal focused on ...

Recommended for you

Robotic insect mimics nature's extreme moves

July 30, 2015

The concept of walking on water might sound supernatural, but in fact it is a quite natural phenomenon. Many small living creatures leverage water's surface tension to maneuver themselves around. One of the most complex maneuvers, ...

The sound of music, according to physicists

July 30, 2015

Joshua Bodon is sick of hearing "Somewhere Over the Rainbow." More specifically, he's sick of hearing one 25-second clip of the song repeated more than 550 times.

New blow for 'supersymmetry' physics theory

July 27, 2015

In a new blow for the futuristic "supersymmetry" theory of the universe's basic anatomy, experts reported fresh evidence Monday of subatomic activity consistent with the mainstream Standard Model of particle physics.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.