Evolutionary molecule identified by researchers

Aug 07, 2012

(Phys.org) -- Researchers at the University of Dundee have identified a molecule that could play a key role in how cells develop into the building blocks of life.

try to understand how cells that are at first identical differentiate into the specialised cell types that make up tissues and organs.

Now researchers in the College of Life Sciences at Dundee, led by Professor Pauline Schaap, have identified a molecule called cyclic-di-GMP as being the `signal' which can induce differentiation into stalk cells.

The Schaap laboratory studies a simple multicellular organism, Dictyostelium, in which motile cells (those which can move spontaneously) differentiate into two immobile cell types: stalk cells and spores.

In earlier research they showed that cyclic AMP induces the differentiation of . Now they have identified another molecule, cyclic-di-GMP, as the signal that induces the differentiation of stalk cells.

The new research is published in the journal Nature.

"Our work presents the opportunity to fully understand how cells learned to become different from each other in early ," said Professor Schaap.

"These findings are also remarkable because cyclic-di-GMP was previously only found in bacteria, where it causes bacteria to lose motility and transform into large sticky colonies, known as biofilms. The fact that an organism like Dictyostelium, which is very far removed from bacteria, uses the same mechanism is very interesting and suggests that the processes which cause in eukaryotes, like ourselves, may have very deep ."

Explore further: New research shows how pathogenic E. coli O157:H7 binds to fresh vegetables

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Lifestyle determines gut microbes

16 hours ago

An international team of researchers has for the first time deciphered the intestinal bacteria of present-day hunter-gatherers.

Rethink education to fuel bioeconomy, says report

18 hours ago

Microbes can be highly efficient, versatile and sophisticated manufacturing tools, and have the potential to form the basis of a vibrant economic sector. In order to take full advantage of the opportunity microbial-based ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Torbjorn_Larsson_OM
not rated yet Aug 08, 2012
Um, my earlier comment seems to have disappeared.

I was noting that the choice of Dictyostelium as model organism was an excellent one. Yet again it shows how early some traits of multicellulars go.

In other words, I like my molds slimy. =D

More news stories

Gene removal could have implications beyond plant science

(Phys.org) —For thousands of years humans have been tinkering with plant genetics, even when they didn't realize that is what they were doing, in an effort to make stronger, healthier crops that endured climates better, ...

Making 'bucky-balls' in spin-out's sights

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...