Evolutionary molecule identified by researchers

Aug 07, 2012

(Phys.org) -- Researchers at the University of Dundee have identified a molecule that could play a key role in how cells develop into the building blocks of life.

try to understand how cells that are at first identical differentiate into the specialised cell types that make up tissues and organs.

Now researchers in the College of Life Sciences at Dundee, led by Professor Pauline Schaap, have identified a molecule called cyclic-di-GMP as being the `signal' which can induce differentiation into stalk cells.

The Schaap laboratory studies a simple multicellular organism, Dictyostelium, in which motile cells (those which can move spontaneously) differentiate into two immobile cell types: stalk cells and spores.

In earlier research they showed that cyclic AMP induces the differentiation of . Now they have identified another molecule, cyclic-di-GMP, as the signal that induces the differentiation of stalk cells.

The new research is published in the journal Nature.

"Our work presents the opportunity to fully understand how cells learned to become different from each other in early ," said Professor Schaap.

"These findings are also remarkable because cyclic-di-GMP was previously only found in bacteria, where it causes bacteria to lose motility and transform into large sticky colonies, known as biofilms. The fact that an organism like Dictyostelium, which is very far removed from bacteria, uses the same mechanism is very interesting and suggests that the processes which cause in eukaryotes, like ourselves, may have very deep ."

Explore further: Researchers discover new mechanism of DNA repair

Related Stories

Recommended for you

Researchers discover new mechanism of DNA repair

Jul 03, 2015

The DNA molecule is chemically unstable giving rise to DNA lesions of different nature. That is why DNA damage detection, signaling and repair, collectively known as the DNA damage response, are needed.

Stopping Candida in its tracks

Jul 03, 2015

Scientists are one step closer to understanding how a normally harmless fungus changes to become a deadly infectious agent.

New technique maps elusive chemical markers on proteins

Jul 02, 2015

Unveiling how the 20,000 or so proteins in the human body work—and malfunction—is the key to understanding much of health and disease. Now, Salk researchers developed a new technique that allows scientists ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Torbjorn_Larsson_OM
Aug 07, 2012
This comment has been removed by a moderator.
Torbjorn_Larsson_OM
not rated yet Aug 08, 2012
Um, my earlier comment seems to have disappeared.

I was noting that the choice of Dictyostelium as model organism was an excellent one. Yet again it shows how early some traits of multicellulars go.

In other words, I like my molds slimy. =D

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.