Evolutionary molecule identified by researchers

August 7, 2012

(Phys.org) -- Researchers at the University of Dundee have identified a molecule that could play a key role in how cells develop into the building blocks of life.

try to understand how cells that are at first identical differentiate into the specialised cell types that make up tissues and organs.

Now researchers in the College of Life Sciences at Dundee, led by Professor Pauline Schaap, have identified a molecule called cyclic-di-GMP as being the `signal' which can induce differentiation into stalk cells.

The Schaap laboratory studies a simple multicellular organism, Dictyostelium, in which motile cells (those which can move spontaneously) differentiate into two immobile cell types: stalk cells and spores.

In earlier research they showed that cyclic AMP induces the differentiation of . Now they have identified another molecule, cyclic-di-GMP, as the signal that induces the differentiation of stalk cells.

The new research is published in the journal Nature.

"Our work presents the opportunity to fully understand how cells learned to become different from each other in early ," said Professor Schaap.

"These findings are also remarkable because cyclic-di-GMP was previously only found in bacteria, where it causes bacteria to lose motility and transform into large sticky colonies, known as biofilms. The fact that an organism like Dictyostelium, which is very far removed from bacteria, uses the same mechanism is very interesting and suggests that the processes which cause in eukaryotes, like ourselves, may have very deep ."

Explore further: Finely tuned WspRs help bacteria beat body by building biofilm

Related Stories

Recommended for you

How cells in the developing ear 'practice' hearing

November 25, 2015

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular ...

How cells 'climb' to build fruit fly tracheas

November 25, 2015

Fruit fly windpipes are much more like human blood vessels than the entryway to human lungs. To create that intricate network, fly embryonic cells must sprout "fingers" and crawl into place. Now researchers at The Johns Hopkins ...

Study suggests fish can experience 'emotional fever'

November 25, 2015

(Phys.org)—A small team of researchers from the U.K. and Spain has found via lab study that at least one type of fish is capable of experiencing 'emotional fever,' which suggests it may qualify as a sentient being. In their ...


Adjust slider to filter visible comments by rank

Display comments: newest first

Aug 07, 2012
This comment has been removed by a moderator.
not rated yet Aug 08, 2012
Um, my earlier comment seems to have disappeared.

I was noting that the choice of Dictyostelium as model organism was an excellent one. Yet again it shows how early some traits of multicellulars go.

In other words, I like my molds slimy. =D

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.