Chemists do a double take on the double helix

August 16, 2012 by Mary-Ann Muffoletto
Frequent examples of double helices occur in art and science, clockwise from bottom center, DNA model, Momo's staircase in the Vatican Museums, USU chemists Ivanov and Boldyrev’s model and Giambologna’s 'Rape of the Sabine Women.’

( -- When most people think of a double helix, they think of DNA structure — a now familiar image thanks to Watson and Crick’s landmark 1953 discovery of the double-stranded molecules of nucleic acids. Yet human fascination with the distinctive twisted ladder-shape stretches back through ancient history, says Utah State University chemist Alexander Ivanov.

“It’s a beautiful structure and one can see many examples in art and architecture,” says Ivanov, a doctoral student in physical chemistry. “Think of Giambologna’s ‘Rape of the Sabine Women’ and Momo’s spiral staircase in the Vatican Museums.”

The geometric structure plays a significant role in metabolism and evolution. While it appears in forms great and small in varied organisms, it is very rare in inorganic chemistry.

“So, you can imagine our excitement when, using computer models, we predicted the existence of double-helix structures in simple lithium-phosphorus species,” Ivanov says.

The findings stem from a National Science Foundation-funded study Ivanov conducted with USU faculty mentor Alexander Boldyrev; his previous faculty mentor Konstantin Bozhenko of the Peoples’ Friendship University of Russia and colleagues Andrew Morris and Chris Pickard of Great Britain’s University College London. The team’s research appears in the Aug. 13, 2012, editions of Angewandte Chemie Internationale, journal of the German Chemical Society, and Chemical & Engineering News.

Finding the spirals wasn’t the initial goal of the team’s study, says Boldyrev, professor in USU’s Department of Chemistry and Biochemistry.

“We planned to probe these simple species, which consist only of lithium and phosphorus, and expected to find round, crown-like structures similar to those of sulfur compounds,” he says. “It was surprising to find the double helices.”

The findings challenge 20th century studies that suggested simpler structures for lithium-phosphorus species. With this new discovery, the chemists suspect many more inorganic compounds may also have structures.

“The new findings expand our knowledge of these compounds and have implications for future nanotechnology applications,” Boldyrev says. “Now it’s up to experimentalists to take explore our theories.”

Explore further: Phosphorus identified as the missing link in evolution of animals

Related Stories

The kids are alright

May 26, 2011

Children should be seen and not heard... who says? A Philosophy academic at The University of Nottingham is challenging the adage by teaching primary school children to argue properly.

Recommended for you

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

New 'self-healing' gel makes electronics more flexible

November 25, 2015

Researchers in the Cockrell School of Engineering at The University of Texas at Austin have developed a first-of-its-kind self-healing gel that repairs and connects electronic circuits, creating opportunities to advance the ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...

Atom-sized craters make a catalyst much more active

November 24, 2015

Bombarding and stretching an important industrial catalyst opens up tiny holes on its surface where atoms can attach and react, greatly increasing its activity as a promoter of chemical reactions, according to a study by ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (2) Aug 17, 2012
Re: "Yet human fascination with the distinctive twisted ladder-shape stretches back through ancient history, says Utah State University chemist Alexander Ivanov."

Yes, and there are people who study these things called the archetypes for a living. They are called comparative mythologists. But, mythology continues to be equated with "myth" -- untrue. For many people, there is accordingly no wonder that we collectively ignore the hundreds of stories about the archetypes. The stories are simply assumed to have no information within them.

Not everybody is buying it.

The double-helix is the shape of the vortex. Both are the natural morphology for electrical currents which travel over plasma.

Zeus is pictured by the Greeks with what is always labeled by ancients as a "thunderbolt," but this thunderbolt is not the lichtenberg shape of terrestrial lightning. The forms which Zeus holds in his hand as his instrument of power correspond to high-intensity discharges from the plasma lab.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.