Chemists do a double take on the double helix

Aug 16, 2012 by Mary-Ann Muffoletto
Frequent examples of double helices occur in art and science, clockwise from bottom center, DNA model, Momo's staircase in the Vatican Museums, USU chemists Ivanov and Boldyrev’s model and Giambologna’s 'Rape of the Sabine Women.’

(Phys.org) -- When most people think of a double helix, they think of DNA structure — a now familiar image thanks to Watson and Crick’s landmark 1953 discovery of the double-stranded molecules of nucleic acids. Yet human fascination with the distinctive twisted ladder-shape stretches back through ancient history, says Utah State University chemist Alexander Ivanov.

“It’s a beautiful structure and one can see many examples in art and architecture,” says Ivanov, a doctoral student in physical chemistry. “Think of Giambologna’s ‘Rape of the Sabine Women’ and Momo’s spiral staircase in the Vatican Museums.”

The geometric structure plays a significant role in metabolism and evolution. While it appears in forms great and small in varied organisms, it is very rare in inorganic chemistry.

“So, you can imagine our excitement when, using computer models, we predicted the existence of double-helix structures in simple lithium-phosphorus species,” Ivanov says.

The findings stem from a National Science Foundation-funded study Ivanov conducted with USU faculty mentor Alexander Boldyrev; his previous faculty mentor Konstantin Bozhenko of the Peoples’ Friendship University of Russia and colleagues Andrew Morris and Chris Pickard of Great Britain’s University College London. The team’s research appears in the Aug. 13, 2012, editions of Angewandte Chemie Internationale, journal of the German Chemical Society, and Chemical & Engineering News.

Finding the spirals wasn’t the initial goal of the team’s study, says Boldyrev, professor in USU’s Department of Chemistry and Biochemistry.

“We planned to probe these simple species, which consist only of lithium and phosphorus, and expected to find round, crown-like structures similar to those of sulfur compounds,” he says. “It was surprising to find the double helices.”

The findings challenge 20th century studies that suggested simpler structures for lithium-phosphorus species. With this new discovery, the chemists suspect many more inorganic compounds may also have structures.

“The new findings expand our knowledge of these compounds and have implications for future nanotechnology applications,” Boldyrev says. “Now it’s up to experimentalists to take explore our theories.”

Explore further: Structure of sodium channels different than previously believed

add to favorites email to friend print save as pdf

Related Stories

The kids are alright

May 26, 2011

Children should be seen and not heard... who says? A Philosophy academic at The University of Nottingham is challenging the adage by teaching primary school children to argue properly.

Recommended for you

Breakthrough points to new drugs from nature

Apr 16, 2014

Researchers at Griffith University's Eskitis Institute have developed a new technique for discovering natural compounds which could form the basis of novel therapeutic drugs.

World's first successful visualisation of key coenzyme

Apr 16, 2014

Japanese researchers have successfully developed the world's first imaging method for visualising the behaviour of nicotine-adenine dinucleotide derivative (NAD(P)H), a key coenzyme, inside cells. This feat ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

HannesAlfven
1 / 5 (2) Aug 17, 2012
Re: "Yet human fascination with the distinctive twisted ladder-shape stretches back through ancient history, says Utah State University chemist Alexander Ivanov."

Yes, and there are people who study these things called the archetypes for a living. They are called comparative mythologists. But, mythology continues to be equated with "myth" -- untrue. For many people, there is accordingly no wonder that we collectively ignore the hundreds of stories about the archetypes. The stories are simply assumed to have no information within them.

Not everybody is buying it.

The double-helix is the shape of the vortex. Both are the natural morphology for electrical currents which travel over plasma.

Zeus is pictured by the Greeks with what is always labeled by ancients as a "thunderbolt," but this thunderbolt is not the lichtenberg shape of terrestrial lightning. The forms which Zeus holds in his hand as his instrument of power correspond to high-intensity discharges from the plasma lab.

More news stories

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Ex-Apple chief plans mobile phone for India

Former Apple chief executive John Sculley, whose marketing skills helped bring the personal computer to desktops worldwide, says he plans to launch a mobile phone in India to exploit its still largely untapped ...

Filipino tests negative for Middle East virus

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

Egypt archaeologists find ancient writer's tomb

Egypt's minister of antiquities says a team of Spanish archaeologists has discovered two tombs in the southern part of the country, one of them belonging to a writer and containing a trove of artifacts including reed pens ...