White rot fungus boosts ethanol production from corn stalks, cobs and leaves

July 11, 2012

Scientists are reporting new evidence that a white rot fungus shows promise in the search for a way to use waste corn stalks, cobs and leaves – rather than corn itself – to produce ethanol to extend supplies of gasoline. Their study on using the fungus to break down the tough cellulose and related material in this so-called "corn stover" to free up sugars for ethanol fermentation appears in the ACS' journal Industrial & Engineering Chemistry Research.

Yebo Li and colleagues explain that supplies are facing a crunch because corn is critical for animal feed and food. They note that the need for new sources of ethanol has shifted attention to using stover, which is the most abundant agricultural residue in the U.S., estimated at 170-256 million tons per year. The challenge is to find a way to break down tough cellulose material in cobs, stalks and leaves – so that sugars inside can be fermented to ethanol. Previous studies indicated that the microbe Ceriporiopsis subvermispora, known as a white rot fungus, showed promise for breaking down the tough plant material prior to treatment with enzymes to release the sugars. To advance that knowledge, they evaluated how well the fungus broke down the different parts of corn stover and improved the sugar yield.

Treating stover with the white rot fungus for one month enabled them to extract up to 30 percent more sugar from the leaves and 50 percent more from the stalks and cobs. Because corn leaves are useful for controlling soil erosion when left in the field, harvesting only the cobs and stalks for ethanol production may make the most sense in terms of sustainable agriculture, the report suggests.

Explore further: Research aims for more efficiency in harvest and handling

More information: “Enzymatic Digestibility of Corn Stover Fractions in Response to Fungal Pretreatment” Industrial & Engineering Chemistry Research. 2012, 51 (21), pp 7153–7159. DOI: 10.1021/ie300487z

Abstract
Corn stover fractions (leaves, cobs, and stalks) were studied for enzymatic digestibility after pretreatment with a white rot fungus, Ceriporiopsis subvermispora. Among the three fractions, leaves had the least recalcitrance to fungal pretreatment and the lignin degradation reached 45% after 30 days of pretreatment. The lignin degradation of stalks and cobs was similar but was significantly lower than that of leaves (p < 0.05). For all fractions, xylan and glucan degradation followed a pattern similar to lignin degradation, with leaves having a significantly higher percentage of degradation (p < 0.05). Hydrolytic enzyme activity also revealed that the fungus was more active in the degradation of carbohydrates in leaves. As a result of fungal pretreatment, the highest sugar yield, however, was obtained with corn cobs.

Related Stories

Research aims for more efficiency in harvest and handling

September 27, 2006

Kevin Shinners wants farmers to put less energy into harvesting and handling biofuel crops - less fuel, less time and less labor. As a field machinery specialist, Shinners has worked to improve the efficiency of harvesting ...

Process can cut the cost of making cellulosic biofuels

January 22, 2009

A patented Michigan State University process to pretreat corn-crop waste before conversion into ethanol means extra nutrients don't have to be added, cutting the cost of making biofuels from cellulose.

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

4 million years at Africa's salad bar

August 3, 2015

As grasses grew more common in Africa, most major mammal groups tried grazing on them at times during the past 4 million years, but some of the animals went extinct or switched back to browsing on trees and shrubs, according ...

A look at living cells down to individual molecules

August 3, 2015

EPFL scientists have been able to produce footage of the evolution of living cells at a nanoscale resolution by combining atomic force microscopy and an a super resolution optical imaging system that follows molecules that ...

New lizard named after Sir David Attenborough

August 3, 2015

A research team led by Dr Martin Whiting from the Department of Biological Sciences recently discovered a beautifully coloured new species of flat lizard, which they have named Platysaurus attenboroughi, after Sir David Attenborough.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.