A greener way to raise cotton and combat nematodes

Jul 16, 2012 By Dennis O'Brien
A juvenile root-knot nematode, Meloidogyne incognita, penetrates a tomato root. Once inside, the juvenile, which also attacks cotton roots, causes a gall to form and robs the plant of nutrients. Credit: William Wergin and Richard Sayre. Colorized by Stephen Ausmus.

(Phys.org) -- U.S. Department of Agriculture (USDA) scientists are using molecular tools to help cotton growers cut back on their use of pesticides in controlling one of their worst adversaries: the root-knot nematode (Meloidogyne incognita). Worldwide, the soil pest costs growers up to 10 percent of their crop, and it's a constant threat in the Southeastern United States, where it thrives in the sandy soils.

Richard Davis, a plant pathologist with the Agricultural Research Service (ARS) in Tifton, Ga., and his colleagues are hunting for that will lead to development of commercial varieties of cotton better equipped to resist root-knot nematodes. They also have released a new line that gives cotton breeders a boost in their efforts to develop resistant lines.

ARS is USDA's principal intramural scientific research agency, and this project supports USDA's priority of promoting agricultural sustainability.

Much of Davis' research is being funded by the cotton growers who want to replace their chemical treatments with environmentally friendly ways to control nematodes. The work has taken on a sense of urgency because a pesticide called Temik, used to control nematodes in cotton fields, is in short supply and is scheduled to be discontinued because of health and environmental concerns.

Davis and Peng Chee, his University of Georgia partner, published a paper in 2006 that identified areas of the cotton genome where root-knot resistance genes are likely to reside. They have since refined the search by mapping portions of the chromosome where the are located, and identifying "flanking markers" that lie on either side of the genes themselves. These results, published in Theoretical and Applied Genetics, will be critical in the search for the specific genes that confer resistance.

Developing cotton lines that resist the root-knot nematode is time-consuming and extremely expensive, in part because resistance is a multi-gene trait. Cotton also has a diverse genome—some plants have two sets of chromosomes, while others have four—making it difficult to cross "wild" resistant germplasm with commercial cultivars and come up with a hybrid that will produce seed.

But the line developed by Davis and Chee will be an excellent tool for breeders because it can grow throughout the Southeast and produces higher yields and a higher fiber quality than the line now used in many field trials. The new line is the result of several years of trials where researchers evaluated crosses among plants, some raised in fields inoculated with the nematode and others raised in fields free of it. The researchers recently released it in the Journal of Plant Registrations.

Explore further: Scientists tap trees' evolutionary databanks to discover environment adaptation strategies

More information: Read more about this research in the July 2012 issue of Agricultural Research magazine.

add to favorites email to friend print save as pdf

Related Stories

Outwitting pesky parasites

Jul 15, 2007

Across the southern United States, an invisible, yet deadly parasite known as the root-knot nematode is crippling soybean crops. While plant breeders are racing to develop cultivars resistant to the root-knot nematode, they ...

ARS Survey Helps Growers Track Two Key Cotton Pests

Dec 01, 2009

(PhysOrg.com) -- Cotton growers will be better able to keep an eye out for two common pests because of a comprehensive survey by Agricultural Research Service (ARS) scientists at College Station, Texas.

Recommended for you

Scientists target mess from Christmas tree needles

23 hours ago

The presents are unwrapped. The children's shrieks of delight are just a memory. Now it's time for another Yuletide tradition: cleaning up the needles that are falling off your Christmas tree.

Top Japan lab dismisses ground-breaking stem cell study

Dec 26, 2014

Japan's top research institute on Friday hammered the final nail in the coffin of what was once billed as a ground-breaking stem cell study, dismissing it as flawed and saying the work could have been fabricated.

Research sheds light on what causes cells to divide

Dec 24, 2014

When a rapidly-growing cell divides into two smaller cells, what triggers the split? Is it the size the growing cell eventually reaches? Or is the real trigger the time period over which the cell keeps growing ...

Locking mechanism found for 'scissors' that cut DNA

Dec 24, 2014

Researchers at Johns Hopkins have discovered what keeps an enzyme from becoming overzealous in its clipping of DNA. Since controlled clipping is required for the production of specialized immune system proteins, ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

SatanLover
not rated yet Jul 16, 2012
you can do whatever you like to fight these creatures but in the end, they will evolve and adapt to it.

fuck you monsanto.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.