A greener way to raise cotton and combat nematodes

Jul 16, 2012 By Dennis O'Brien
A juvenile root-knot nematode, Meloidogyne incognita, penetrates a tomato root. Once inside, the juvenile, which also attacks cotton roots, causes a gall to form and robs the plant of nutrients. Credit: William Wergin and Richard Sayre. Colorized by Stephen Ausmus.

(Phys.org) -- U.S. Department of Agriculture (USDA) scientists are using molecular tools to help cotton growers cut back on their use of pesticides in controlling one of their worst adversaries: the root-knot nematode (Meloidogyne incognita). Worldwide, the soil pest costs growers up to 10 percent of their crop, and it's a constant threat in the Southeastern United States, where it thrives in the sandy soils.

Richard Davis, a plant pathologist with the Agricultural Research Service (ARS) in Tifton, Ga., and his colleagues are hunting for that will lead to development of commercial varieties of cotton better equipped to resist root-knot nematodes. They also have released a new line that gives cotton breeders a boost in their efforts to develop resistant lines.

ARS is USDA's principal intramural scientific research agency, and this project supports USDA's priority of promoting agricultural sustainability.

Much of Davis' research is being funded by the cotton growers who want to replace their chemical treatments with environmentally friendly ways to control nematodes. The work has taken on a sense of urgency because a pesticide called Temik, used to control nematodes in cotton fields, is in short supply and is scheduled to be discontinued because of health and environmental concerns.

Davis and Peng Chee, his University of Georgia partner, published a paper in 2006 that identified areas of the cotton genome where root-knot resistance genes are likely to reside. They have since refined the search by mapping portions of the chromosome where the are located, and identifying "flanking markers" that lie on either side of the genes themselves. These results, published in Theoretical and Applied Genetics, will be critical in the search for the specific genes that confer resistance.

Developing cotton lines that resist the root-knot nematode is time-consuming and extremely expensive, in part because resistance is a multi-gene trait. Cotton also has a diverse genome—some plants have two sets of chromosomes, while others have four—making it difficult to cross "wild" resistant germplasm with commercial cultivars and come up with a hybrid that will produce seed.

But the line developed by Davis and Chee will be an excellent tool for breeders because it can grow throughout the Southeast and produces higher yields and a higher fiber quality than the line now used in many field trials. The new line is the result of several years of trials where researchers evaluated crosses among plants, some raised in fields inoculated with the nematode and others raised in fields free of it. The researchers recently released it in the Journal of Plant Registrations.

Explore further: Study finds new links between number of duplicated genes and adaptation

More information: Read more about this research in the July 2012 issue of Agricultural Research magazine.

add to favorites email to friend print save as pdf

Related Stories

Outwitting pesky parasites

Jul 15, 2007

Across the southern United States, an invisible, yet deadly parasite known as the root-knot nematode is crippling soybean crops. While plant breeders are racing to develop cultivars resistant to the root-knot nematode, they ...

ARS Survey Helps Growers Track Two Key Cotton Pests

Dec 01, 2009

(PhysOrg.com) -- Cotton growers will be better able to keep an eye out for two common pests because of a comprehensive survey by Agricultural Research Service (ARS) scientists at College Station, Texas.

Recommended for you

Chrono, the last piece of the circadian clock puzzle?

10 hours ago

All organisms, from mammals to fungi, have daily cycles controlled by a tightly regulated internal clock, called the circadian clock. The whole-body circadian clock, influenced by the exposure to light, dictates the wake-sleep ...

Drought hormones measured

11 hours ago

Floods and droughts are increasingly in the news, and climate experts say their frequency will only go up in the future. As such, it is crucial for scientists to learn more about how these extreme events affect plants in ...

Research traces the genetic print of the Asturian people

18 hours ago

The DNA of the people of Asturias still maintains the genetic prints of remote ages. A research conducted at the University of Oviedo proves that the old frontiers marked by the pre-Roman Astur settlements have left their ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

SatanLover
not rated yet Jul 16, 2012
you can do whatever you like to fight these creatures but in the end, they will evolve and adapt to it.

fuck you monsanto.

More news stories

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Wireless industry makes anti-theft commitment

A trade group for wireless providers said Tuesday that the biggest mobile device manufacturers and carriers will soon put anti-theft tools on the gadgets to try to deter rampant smartphone theft.