'Extremely little' telescope discovers pair of odd planets

Jun 13, 2012 by Pam Frost Gorder

Even small telescopes can make big discoveries. Though the KELT North telescope in southern Arizona carries a lens no more powerful than a high-end digital camera, it's just revealed the existence of two very unusual faraway planets.

One planet is a massive, puffed-up oddity that could change ideas of how solar systems evolve. The other orbits a very bright star, and will allow astronomers to make detailed measurements of the atmospheres of these bizarre worlds.

Ohio State University doctoral student Thomas Beatty and Vanderbilt University research scientist Robert Siverd reported these discoveries for the KELT-North team at the national meeting in Anchorage, Alaska. Beatty described the newly discovered planets in a news conference on Wednesday, June 13.

One planet is located in the constellation Andromeda. Dubbed KELT-1b, it is so massive that it may better be described as a 'failed star' rather than a planet. A super hot, super dense ball of , KELT-1b is located so close to its star that it whips through an entire "yearly" orbit in a little over a day - all the while being blasted by six thousand times the radiation Earth receives from the sun.

What's more, the planet appears to have been jostled in the past by a previously unknown distant binary that is orbiting the KELT-1 .

In short, the planet "resets the bar for 'weird,'" said Scott Gaudi, an associate professor of astronomy at Ohio State and a member of the research team.

The other planet, KELT-2Ab, is located in the constellation Auriga, and is typical of many previously discovered extrasolar planets in that it much resembles our own Jupiter. But its is very bright - so bright that astronomers believe that they will be able to directly observe KELT-2Ab's atmosphere by studying the starlight that shines through it and the that radiates from it—using telescopes located not only in space, but also on the ground.

"Normally, we would need a space telescope to do all that, but in this case the host star is so bright that we can make many of these measurements from the ground," Beatty said.

KELT is short for "Kilodegree Extremely Little Telescope." Astronomers at Ohio State and Vanderbilt University jointly operate KELT North and its twin, KELT South, in order to fill a large gap in the available technologies for finding extrasolar planets.

Other telescopes were designed to look at very faint in tiny sections of the sky, and at very high resolution, Beatty explained. The KELTs, in contrast, look at millions of very bright stars at once, over broad sections of sky, and at low resolution.

"Our stars are so bright, these 'more powerful' telescopes can't even look at them," Beatty said.

The KELT team scans those bright stars, and watches to see if the starlight dims just a little - an indication that a planet has crossed in front of the star. The technique is called the "transit method," and takes advantage of situations such as the recent transit of Venus across the face of the sun in our own solar system.

It's a low-cost means of planet-hunting, using mostly off-the-shelf technology; Whereas a traditional astronomical telescope costs millions of dollars to build, the hardware for a KELT telescope runs less than $75,000.

Joshua Pepper, a research assistant professor and fellow of the Vanderbilt Initiative in Data-Intensive Astrophysics, built KELT North when he was a doctoral student at Ohio State. Study co-author Robert Siverd further developed and enhanced the instrument before he went to Vanderbilt. There, they work with Keivan Stassun, professor of physics and astronomy, who hired them to build KELT South.

"Exoplanets like KELT-1b and KELT-2Ab that pass directly in front of very bright stars are extremely important, but extremely rare, because there just aren't that many very bright stars in the sky," said Stassun. "The KELT-North and KELT-South partnership gives us the advantage of hunting for these rare gems from both hemispheres, doubling the hunting grounds."

KELT North covers the northern sky, while KELT South, located near Cape Town, South Africa, covers the southern sky. Both newly discovered planets were found using KELT North.

After KELT detected these new astronomical objects, a collaboration of KELT with astronomers at Harvard, Swarthmore, the University of Louisville, Las Cumbres Observatory, and even amateur astronomers helped to confirm the identities of these objects with additional observations. According to Pepper, "The KELT project has benefited from the dedication of a great team of astronomers, and represents an enormous scientific return on a relatively small investment."

The more typical of the two planets, KELT-2Ab, is 30 percent larger than Jupiter with 50 percent more mass. It resides in a binary system called HD 42176, with one star that is slightly bigger than our sun, and another star that is slightly smaller. KELT-2Ab orbits the bigger star, which is bright enough to be seen from Earth with binoculars. That's why astronomers hope to be able measure the starlight that passes through KELT-2Ab's atmosphere when the star returns to KELT North's field of view this November.

KELT-1b, in contrast, is one of the most bizarre transiting companions ever detected. It orbits a star not unlike our sun, but the similarity to our solar system ends there.

The planet is slightly larger than Jupiter, but contains 27 times the mass. Thus, it qualifies as a 'failed star,' or "brown dwarf." Although it is made primarily of hydrogen, it is so massive and compressed that its density matches that of the densest naturally occurring element on Earth: osmium - a shiny, bluish metal found in platinum ore that is approximately twice as dense as lead.

Because it orbits its host star once every 30 hours, a solar "year" on KELT-1b passes in a little more than one Earth day. And because it orbits so closely, it is blasted with 6,000 times the amount of stellar radiation than we are exposed to on Earth. Its surface temperature is likely above 4,000 degrees Fahrenheit (about 2,200 degrees Celsius).

By comparison, the planet Mercury orbits our sun once every 68 days, and the hottest temperature on the surface reaches only 800 degrees Fahrenheit (more than 425 degrees Celsius).

Likely in response to the intense radiation, KELT-1b has inflated to a larger size than astronomers would normally predict.

"This is the first definitively 'inflated' brown dwarf found, and exactly how this happened is a complete mystery that should keep theorists busy for a while," Gaudi said.

KELT-1b is a strange world, indeed. If you could stand on the surface, the "sun" would take up one quarter of the sky overhead.

Fewer than 1 percent of the extrasolar planets ever discovered have been both extremely massive and extremely close to their host stars.

"This is a great system for studying orbital dynamics," said Siverd, who is the lead investigator on the KELT-1 discovery.

"It has the strongest tides of any brown dwarf system found so far," he added.

KELT-1b and its star are locked in a cosmic dance that resembles that of the Earth and the moon, with a notable exception. The moon is tidally locked to the Earth - that's why we always see the same face of the moon. But the Earth itself is not tidally locked to the moon.

KELT-1b exerts so much gravitational force on its star that the star's rotation rate actually matches the planet's : the two are tidally locked in each other's gaze - for now. In a few billion years, KELT-1b's star will expand and swallow the planet whole.

Gaudi said that astronomers are beginning to suspect that something unusual happens during the evolution of such solar systems that drives massive planets into these kinds of close encounters. The presence of a stellar sibling orbiting both of the newly discovered solar systems may be a "smoking gun" clue that past interactions between the planets and these distant siblings is an important part of that process.

"We think they are born at much larger, colder distances," he said, "and then like retirees moving to Florida, they move to warmer climes as they get older."

Explore further: Telescopes hint at neutrino beacon at the heart of the Milky Way

Related Stories

Scientists discover 10 new planets

Jul 19, 2011

A total of 10 new planets have been unearthed by an international team of scientists, and one of these is orbiting a star just a few tens of millions years old.

Capturing planets

May 22, 2012

(Phys.org) -- The discovery of planets around other stars has led to the realization that alien solar systems often have bizarre features - at least they seem bizarre to us because they were so unexpected. ...

An exoplanet orbiting a double star

Oct 03, 2011

(PhysOrg.com) -- The Kepler satellite, which has now reported the detection of 1781 candidate exoplanets (a planet around a star other than the sun), has also discovered that at least one of them orbits a ...

Space image: Compact planetary system

Mar 15, 2012

(PhysOrg.com) -- This artist's concept depicts a planetary system so compact that it's more like Jupiter and its moons than a star and its planets. Astronomers using data from NASA's Kepler mission and ground-based ...

Increasing the odds of the sweep

Oct 04, 2006

Using ESO's Very Large Telescope, astronomers have confirmed the extrasolar planet status of two of the 16 candidates discovered by the NASA/ESA Hubble Space Telescope. One of the two confirmed exoplanets has ...

Astronomers discover 'tilted planets'

Dec 22, 2009

(PhysOrg.com) -- University of Exeter, UK, research has added to a growing evidence that several giant planets have orbits so tilted that their orbits can be perpendicular or even backwards relative to their ...

Recommended for you

A colorful gathering of middle-aged stars

Nov 26, 2014

NGC 3532 is a bright open cluster located some 1300 light-years away in the constellation of Carina(The Keel of the ship Argo). It is informally known as the Wishing Well Cluster, as it resembles scattered ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

kevinrtrs
1 / 5 (14) Jun 13, 2012
"We think they are born at much larger, colder distances," he said, "and then like retirees moving to Florida, they move to warmer climes as they get older."

OK, let's assume that some wonderful simulation can confirm this scenario. Problems arise though, when one has to make actual observations to confirm this highly unlikely occurrence. Firstly, such a birth needs to be observed. Secondly, then migration of the planet over a period of time will need to be recorded. Just those two events by themselves represent such big challenges as to be almost impossible. Someone needs to find a way to actually catch a planet in the act of being born all by itself and then switch on the quantum nanorecorder [to record over thousands of human lifetimes]to record further developments. It's like a chance in 1,000,000,000 trillion. Good luck with that.
roboferret
5 / 5 (14) Jun 13, 2012
My father has a rather nice antique oak table (not boasting here, there's a point coming up). It's made from a tree that died before I was born, and was planted centuries earlier. I have, however no problem believing it all came from an acorn, because I've seen acorns spring shoots, shoots grow oak leaves and shoots develop into saplings. I've also seen trees prepared into wood ready for working, and carpenters making furniture. In the same way, we can look out and see stars in various stages of formation. Celestial mechanics is rather more predicable than furniture making, planets orbit and decay according to the rules of gravitation and thermodynamics by Newton and his ilk. Gas clouds condense into stars and planets form and orbit and decay with almost tedious predictability, because they can't possibly do otherwise. Your argument, as usual, is the argument from ignorance. Please present the falsifiable data for your position. Not against "evolution" but justification for your stance

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.