Combining opposing properties for synergistic function

Jun 27, 2012
Combining opposing properties for synergistic function
Credit: Thinkstock

The properties of nanomaterials often differ in novel ways from those of the bulk material of the same substances. European researchers investigated a completely new class of such materials that could be important for magnetic memory devices.

The field of nanomaterials (on the size of atoms and molecules) is growing at a rapid rate. Development of novel devices depends on development of capable of large-scale synthesis and manufacturing in order to exploit commercial potential.

EU-funding of the ‘Superconductivity - ferromagnetism interplay in nanostructured hybrid systems‘ (SFINX) project enabled to investigate a novel class of hybrid nanomaterials combining superconducting (S) and ferromagnetic (F) metal components.

Ferromagnets are substances that become magnetised in the presence of a . Superconductors are materials that, when cooled to close to absolute zero, lose virtually all electrical resistance (resistance to current flow). Resistance is the electrical opposite of conductance. Along the way, the materials become diamagnetic, or not attracted to a magnetic field due to a lack of unpaired electrons.

Thus, S-F hybrid structures represent an antithesis of properties. Occurring naturally in only very few materials, artificial synthesis of such structures could produce as yet undefined quantum ground states and kinetic properties. Such characteristics could have impact on next-generation magnetic memory devices.

Researchers developed methods to grow and control barriers between F and normal metal (N) (F-N) and two ferromagnetic (F-F) metals. They created S films with embedded magnetic nanoclusters, studying the co-existence of S and F components in S films. Furthermore, the scientists developed theoretical descriptions of the magnetic field dependence of resistivity of F materials on the magnetisation of magnetic clusters.

A theoretical framework for describing spin dependence of properties of F-S-F structures and S-F-S structures was put together. Spin has to do with the angular momentum of elementary particles in motion through these devices. Researchers also manufactured some hybrid microcircuits to study the effects experimentally.

The SFINX consortium made significant progress in theoretical description of novel S-F hybrid nanostructures that exhibit new properties. These are based on both the nanoscale of the materials as well as on the somewhat opposite inherent properties of the individual components related to electronic and magnetic effects. Future magnetic storage devices may thus have enhanced functionalities based on the combination of specific properties of F and S .

Explore further: New paint-like coating makes tough surfaces that repel spills, scratches (w/ Video)

add to favorites email to friend print save as pdf

Related Stories

Magnetic spin on non-magnetic materials

Feb 14, 2012

(PhysOrg.com) -- Nanotechnologists from the University of Twente's MESA+ and MIRA research institutes have developed a method for incorporating magnetic elements into non-magnetic materials in a highly controlled ...

Engineered materials: Custom-made magnets

May 24, 2012

A novel approach to designing artificial materials could enable magnetic devices with a wider range of properties than those now available. An international team of researchers have now extended the properties ...

Recommended for you

Buckybomb shows potential power of nanoscale explosives

17 hours ago

(Phys.org)—Scientists have simulated the explosion of a modified buckminsterfullerene molecule (C60), better known as a buckyball, and shown that the reaction produces a tremendous increase in temperatur ...

Glass coating improves battery performance

Mar 02, 2015

Lithium-sulfur batteries have been a hot topic in battery research because of their ability to produce up to 10 times more energy than conventional batteries, which means they hold great promise for applications ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.