Bursty behaviour found to have similar features across complex systems

June 1, 2012

Several complex systems live in periods of short bursts of high activity followed by long uneventful intermissions. This phenomenon called burstiness can be modelled and predicted with mathematical algorithms. Research of Dr Márton Karsai of Aalto University Department of Biomedical Engineering and Computational Science, now shows that burstiness has universal features in very different systems.

Karsai and his collaborators – Dean Kimmo Kaski of Aalto University School of Science, FidiPro Professor in Aalto University János Kertész, and the world-renowned physicist and network theorist Professor Albert-László Barabási – studied burstiness in human mobile and email communication, in neuron spike trains, and in seismic activity in earthquakes. The results have recently been published in Nature Scientific Reports.

"The method we developed helped us to highlight a novel universal feature of bursty behaviour. This is one step beyond the state of the art assumptions regarding the phenomena of burstiness," assesses Karsai the significance of the group's work.

The research focuses on the dynamic phenomena of burstiness, that is, the mechanisms of temporal fluctuation of levels of activity. We make, for instance, several phone calls and send many emails in a short spurts of time, and otherwise not so much. Neurons fire in spike trains, and earth quakes in similar temporal patterns.

There are not only connections between consecutive events but also in events within bursty periods.

The common feature shared by the studied systems is that beyond being bursty, the bursty events evolve rather in long trains of events than in pairs – contrary to what existing modelling methods have lead to assume.

"We observed that bursts are not independent but rather clustered and they evolve in long bursty trains, which contain several correlated events. The universality of the analysed systems come from the fact that the size distribution of these trains scale very similarly in human communication, neuron firing and earthquakes," describes Karsai the group's results.

All the systems share both a threshold mechanism of a sort and memory effects within their processes. Earth begins to shake when accumulated stress relaxes, and one quake can trigger several aftershocks. Neurons fire in consecutive spike trains when they receive enough excitatory stimuli. Humans make choices between countless virtual options; one phone call or email often turns into many.

"These correlations can be interpreted as a very simple memory process where the actual state of the system depends not only on the previous bursty event but also from all the other events that have evolved in the actual burst train," points out Karsai.

"We hope that our approach will help to disclose other unknown features of correlated heterogeneous temporal behaviour. The methodology can be applied in many different fields of science, engineering and business. For instance, by predicting human communication behaviour, one can better design the usage of resources in telecommunication or help service providers make better business plans."

Explore further: What the brain saw

More information: The original article by Márton Karsai, Kimmo Kaski, Albert-László Barabási & János Kertész (2012) 'Universal features of correlated bursty behaviour', Nature Scientific Reports (2) 397. www.nature.com/srep/2012/120504/srep00397/full/srep00397.html

Related Stories

What the brain saw

March 31, 2011

The moment we open our eyes, we perceive the world with apparent ease. But the question of how neurons in the retina encode what we "see" has been a tricky one. A key obstacle to understanding how our brain functions is that ...

In an emergency, word spreads fast and far

April 4, 2011

(PhysOrg.com) -- Large-scale emergencies, such as bombings and plane crashes, trigger a sharp spike in the number of phone calls and text messages sent by eyewitnesses in the vicinity of the disaster, according to a research ...

Getting inside the control mechanisms of complex systems

May 13, 2011

Northeastern University researchers are offering a fascinating glimpse into how greater control of complex systems, such as cellular networks and social media, can be achieved by merging the tools of network science and control ...

Nurturing a seed of discovery

August 9, 2011

(PhysOrg.com) -- Network scientists at Northeastern University have collaborated with an interdisciplinary team of colleagues in cell biology and interactive data acquisition to create the first large-scale map of a plant’s ...

Study finds human communication is 'bursty'

September 14, 2011

Researchers in Spain have investigated the temporal patterns of human communication and how the latter impacts the spread of information in social networks. The results, published in the journal Physical Review E, show how ...

Recommended for you

Who you gonna trust? How power affects our faith in others

October 6, 2015

One of the ongoing themes of the current presidential campaign is that Americans are becoming increasingly distrustful of those who walk the corridors of power – Exhibit A being the Republican presidential primary, in which ...

Ancient genome from Africa sequenced for the first time

October 8, 2015

The first ancient human genome from Africa to be sequenced has revealed that a wave of migration back into Africa from Western Eurasia around 3,000 years ago was up to twice as significant as previously thought, and affected ...

The hand and foot of Homo naledi

October 6, 2015

The second set of papers related to the remarkable discovery of Homo naledi, a new species of human relative, have been published in scientific journal, Nature Communications, on Tuesday, 6 October 2015.

Mexican site yields new details of sacrifice of Spaniards

October 9, 2015

It was one of the worst defeats in one of history's most dramatic conquests: Only a year after Hernan Cortes landed in Mexico, hundreds of people in a Spanish-led convey were captured, sacrificed and apparently eaten.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.