Tuatara iconic New Zealand reptile shows chewing is not just for mammals

May 29, 2012
The tuatara, an iconic New Zealand reptile, chews its food in a way unlike any other animal on the planet -- challenging the widespread perception that complex chewing ability is closely linked to high metabolism. The New Zealand tuatara (Sphenodon) is a lizard-like reptile that is the only survivor of a group that was globally widespread at the time of the dinosaurs. It lives on 35 islands scattered around the coast of New Zealand and was recently reintroduced to the mainland. Its diet consists of beetles, spiders, crickets, small lizards and, occasionally, sea birds. Credit: UCL

The tuatara, an iconic New Zealand reptile, chews its food in a way unlike any other animal on the planet – challenging the widespread perception that complex chewing ability is closely linked to high metabolism.

Using a sophisticated computer model, scientists from UCL and the University of Hull demonstrate how the tuatara is able to slice its food like a "steak knife". The tuatara's complex technique raises doubts about the supposed link between chewing and high metabolism in mammals.

The New Zealand tuatara (Sphenodon) is a lizard-like that is the only survivor of a group that was globally widespread at the time of the dinosaurs. It lives on 35 islands scattered around the coast of and was recently reintroduced to the mainland. Its diet consists of beetles, spiders, crickets, small lizards and, occasionally, sea birds.

In a paper published in The Anatomical Record, scientists describe the highly specialised jaws of the tuatara. When the reptile chews, the lower jaw closes between two rows of upper teeth. Once closed, the lower jaw slides forward a few millimeters to cut food between sharp edges on the teeth, sawing food apart.

Lead author Dr Marc Jones, UCL Cell and Developmental Biology, said: "Some reptiles such as snakes are able to swallow their food whole but many others use repeated bites to break food down. The tuatara also slices up its food, much like a steak knife."

"Because mammals show the most sophisticated form of chewing, chewing has been linked to high metabolism. However, the tuatara chews food in a relatively complex way but its metabolism is no higher than that of other reptiles with simpler oral food processing abilities. Therefore the relationship between extensive processing and high metabolism has perhaps been overstated."

The team report that due to the shape of the jaw joint, as the jaws slide forwards they also rotate slightly about their long axes. This makes the shearing action more effective and demonstrates that the left and right lower jaws are not fused together at the front as they are in humans.

The tuatara provides an example in which specialisation of the feeding mechanism appears to allow a broader diet.

Dr Jones said: "The slicing jaws of the tuatara allow it to eat a wide range of prey including beetles, spiders, crickets, and small lizards. There are also several grizzly reports of sea birds being found decapitated following predation by tuatara."

"Although the tuatara-like chewing mechanism is rare today, fossils from Europe and Mexico show us that during the time of the dinosaurs (about 160 million years ago) some fossil relatives of the tuatara used a similar system and it was much more widespread."

The team used a computer model developed at the University of Hull which provides a novel way of investigating the evolution and biodiversity of reptiles, allowing complex moving structures to be studied in 3D and from all angles.

Co-author Dr Neil Curtis from the University of Hull's Department of Engineering said: "We developed this virtual model using software that is widely used in the analysis of complex engineering systems. It is the most detailed musculoskeletal model of a skull ever developed and demonstrates the huge potential of this type of computer modelling in biology.

"It allows us to investigate movements within skulls that would be impossible to monitor in a live animal without using harmful X-rays which is not an option for protected species like the ."

Explore further: Estuaries protect Dungeness crabs from deadly parasites

Related Stories

What can a New Zealand reptile tell us about false teeth?

Sep 07, 2010

Using a moving 3D computer model based on the skull and teeth of a New Zealand reptile called tuatara, a BBSRC-funded team from the University of Hull, University College London and the Hull York Medical School ...

Tuatara, the fastest evolving animal

Mar 20, 2008

In a study of New Zealand’s “living dinosaur” the tuatara, evolutionary biologist, and ancient DNA expert, Professor David Lambert and his team from the Allan Wilson Centre for Molecular Ecology and Evolution recovered ...

Rare reptile hatchling found on NZ mainland

Mar 19, 2009

(AP) -- A hatchling of a rare reptile with lineage dating back to the dinosaur age has been found in the wild on the New Zealand mainland for the first time in about 200 years, a wildlife official said Thursday.

Naming evolution's winners and losers

Jul 29, 2009

(PhysOrg.com) -- Mammals and many species of birds and fish are among evolution's "winners," while crocodiles, alligators and a reptile cousin of snakes known as the tuatara are among the losers, according ...

Recommended for you

Estuaries protect Dungeness crabs from deadly parasites

17 hours ago

Parasitic worms can pose a serious threat to the Dungeness crab, a commercially important fishery species found along the west coast of North America. The worms are thought to have caused or contributed to ...

An evolutionary heads-up—the brain size advantage

18 hours ago

A larger brain brings better cognitive performance. And so it seems only logical that a larger brain would offer a higher survival potential. In the course of evolution, large brains should therefore win ...

Our bond with dogs may go back more than 27,000 years

May 21, 2015

Dogs' special relationship to humans may go back 27,000 to 40,000 years, according to genomic analysis of an ancient Taimyr wolf bone reported in the Cell Press journal Current Biology on May 21. Earlier genome ...

Social structure 'helps birds avoid a collision course'

May 21, 2015

The sight of skilful aerial manoeuvring by flocks of Greylag geese to avoid collisions with York's Millennium Bridge intrigued mathematical biologist Dr Jamie Wood. It raised the question of how birds collectively ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.