Robotic spacecraft / rover hybrids for space exploration

May 16, 2012
Pavone’s “Spacecraft/Rover Hybrids for the Exploration of Small Solar System Bodies” mission architecture, which would allow affordable and systematic multi-asset missions where not only specific targets could be closely observed, sampled and cached, but also high-risk, high-payoff measurements could be taken. Credit: Courtesy of Marco Pavone

The big news from space exploration is that small bodies in the cosmos offer tantalizing insight about the very formation of our solar system. So what strategy can be employed to inspect these mini-worlds in a systematic and affordable way?

The solution may be to sprinkle the with robotic platforms.

Marco Pavone is an assistant professor of at Stanford University, and also a research affiliate at the NASA Jet Propulsion Laboratory in Pasadena, Calif.

Thanks to the Innovative Advanced Concepts (NIAC) Program, Pavone is eying a new paradigm to explore comets and asteroids, as well as the small moons of Mars: and Deimos. His NIAC-supported research is titled “Spacecraft/Rover Hybrids for the Exploration of Small Solar System Bodies.”

Pavone’s work centers on developing robotic platforms capable of fast and precise mobility on the surface of small bodies within our solar system. On-the-spot robotic investigation of these exploration targets would not only shed light on how our solar system formed, he explains, but also sharpen the technologies needed for future human exploration of Earth.

What Pavone envisions is, quite plainly, taking on solar system exploration by leaps and bounds.

Making Use of Reduced Gravity

At first blush, having a robot “take a tumble” might sound a bit worrisome – but that’s exactly how Pavone envisions a way to move about on other worlds. The idea is to make use of the reduced gravity of small bodies.

Pavone’s mobility platforms would be unleashed by a mother spacecraft. Once on the surface of a small body, each platform would literally spring into action. Long vaults on the far out world could be accomplished by hopping. Short treks by a platform to select locations on the body are done through a sequence of controlled tumbles. High-altitude, point-to-point jumps by a platform are feasible too.

“The proposed robotic platforms would behave as spacecraft/rover hybrids, capable of accessing most destinations on virtually any small body,” Pavone says. By using multiple platforms, the landscape of a small body could be closely observed, sampled and measured. Another plus for using several units, according to Pavone, is that the loss of one hybrid would not spell the end of the mission.

The NIAC-backed investigation gives Pavone the opportunity to draw upon several fields of his expertise, from control theory, autonomous systems, coordination of multi-robot networks to formation flying and bio-inspired robotics.

“The systematic exploration of small bodies would help unravel the origin of the solar system and its early evolution, as well as assess their astrobiological relevance,” Pavone explains. “In addition, we can evaluate the resource potential of small bodies in view of future human missions beyond Earth.”

Explore further: Mysteries of space dust revealed

add to favorites email to friend print save as pdf

Related Stories

Proposed Mars mission has new name

Feb 28, 2012

A proposed Discovery mission concept led by NASA's Jet Propulsion Laboratory, Pasadena, Calif., to investigate the formation and evolution of terrestrial planets by studying the deep interior of Mars now has ...

Solar wind, moon dust and Martian lights

Apr 16, 2012

The Canadian Space Agency has funded a University of Alberta-led project to study the effects of solar winds on Earth’s moon and on Mars. The results are anticipated to influence design of spacecraft ...

Driving a robot from Space Station

Jun 30, 2011

(PhysOrg.com) -- Meet Justin, an android who will soon be controlled remotely by the astronauts in ESA’s Columbus laboratory on the International Space Station. With this and other intriguing experiments ...

3552 Don Quixote... leaving our solar system?

Jul 11, 2011

“Tell me thy company, and I’ll tell thee what thou art…” In this case it is Asteroid 3552 Don Quixote – one of the most well-known of Near Earth Asteroids. You may know its name, but ...

Recommended for you

Mysteries of space dust revealed

13 hours ago

The first analysis of space dust collected by a special collector onboard NASA's Stardust mission and sent back to Earth for study in 2006 suggests the tiny specks open a door to studying the origins of the ...

A guide to the 2014 Neptune opposition season

18 hours ago

Never seen Neptune? Now is a good time to try, as the outermost ice giant world reaches opposition this weekend at 14:00 Universal Time (UT) or 10:00 AM EDT on Friday, August 29th. This means that the distant ...

Informing NASA's Asteroid Initiative: A citizen forum

Aug 28, 2014

In its history, the Earth has been repeatedly struck by asteroids, large chunks of rock from space that can cause considerable damage in a collision. Can we—or should we—try to protect Earth from potentially ...

Image: Rosetta's comet looms

Aug 28, 2014

Wow! Rosetta is getting ever-closer to its target comet by the day. This navigation camera shot from Aug. 23 shows that the spacecraft is so close to Comet 67P/Churyumov-Gerasimenko that it's difficult to ...

User comments : 0