Several antennas in one: A major innovation for mobile communications

May 11, 2012 By Laure-Anne Pessina
Credit: 2012 EPFL

( -- Scientists at EPFL have developed a single antenna that is capable of transmitting the same data as a two-antenna system. This achievement will be more than useful for future communication systems.

How can the challenges presented by the ever-growing number of wireless mobile devices and the demand for increasingly high data be met without increasing and emission power? Currently MIMO (multiple-input, multiple outputs) uses several antennas to transmit and receive signals. This technique is progressively being implemented in devices such as wireless modems and is to be used for the next generation of mobile phones. However, it poses problems because it is costly and difficult to integrate into hardware.

At EPFL, Julien Perruisseau-Carrier’s group has demonstrated that a single can simultaneously transmit two separate signals that have the same throughput as a MIMO solution. The results were published at the beginning of the year, and part of the new findings will be presented by Julien Perruisseau-Carrier, at the IEEE International Symposium on Antennas and Propagation in Chicago, at the beginning of July.

The problems of a multi-antenna system

In a MIMO system, antennas generally have to be placed at a certain distance from each other, which makes inserting them into mobile and miniature devices a complicated process. An even greater problem with this technique is that each separate transmitting antenna must have its own encoding and amplifying signal device, which is costly and energy-consuming.

One antenna, two signals

As part of collaboration with researchers from Athens Information Technology (AIT), Julien Perruisseau-Carrier’s team developed an antenna capable of emitting simultaneously two information flows, transmitting two independent signals with the same throughput, just as two antennas would do in a MIMO system. This technique called "Beamspace MIMO" allows to significantly reduce the number of physical antennas.

Contrary to what one might think, an antenna does not emit signals in a homogeneous and circular manner. Instead, the repartition of the antenna's radiation is called "radiation pattern." Scientists have managed to decompose this pattern in two, allowing simultaneous emission of two distinct information flows.

Another advantage of this technique is that only one coding and amplifying device is required to treat the first information flow. The second signal is treated only upstream and then used to make the radiation pattern decomposable. The latter signal acts therefore both as an information carrier and as a mean to decompose the principal pattern. "This technique allows us to get rid of part of the usual hardware," says Julien Perruisseau-Carrier. The process is however difficult and complex. "One of the biggest challenges is to ensure that each pattern is really independent, to allow an efficient treatment of the information.”

Success thanks to a global approach

The results were obtained through a cross-disciplinary approach. "This work required us to look at both antennas, particularly reconfigurable ones, and radio coding. Although they are closely linked, these two disciplines are unfortunately often considered separately, which hinders this kind of innovative work," explains the scientist.

Julien Perruisseau-Carrier and his doctoral student Moshen Yousefbeiki are now focusing on a new antenna prototype that will be much more compact and adapted to small mobile devices, such as cell phones and miniature antennas that can be implanted for medical purposes.

Explore further: Lifting the brakes on fuel efficiency

More information: O. N. Alrabadi, et al, "MIMO Transmission using a Single RF Source: Theory and Antenna Design," IEEE Trans. Microw. Theory Tech. and IEEE Trans. Antennas Propag. Joint Special Issue on MIMO Technology, vol. 60, pp. 654-664, 2012.

Related Stories

Smartphones -- the grip of death

Feb 28, 2011

New research by academics in the University of Bristol's Centre for Communications Research has highlighted the problems of reduced sensitivity in wireless communications, along with developing new solutions to overcome the ...

Recommended for you

Lifting the brakes on fuel efficiency

Apr 18, 2014

The work of a research leader at Michigan Technological University is attracting attention from Michigan's Governor as well as automotive companies around the world. Xiaodi "Scott" Huang of Michigan Tech's ...

Large streams of data warn cars, banks and oil drillers

Apr 16, 2014

Better warning systems that alert motorists to a collision, make banks aware of the risk of losses on bad customers, and tell oil companies about potential problems with new drilling. This is the aim of AMIDST, the EU project ...

User comments : 0

More news stories

Growing app industry has developers racing to keep up

Smartphone application developers say they are challenged by the glut of apps as well as the need to update their software to keep up with evolving phone technology, making creative pricing strategies essential to finding ...

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.