Advancing quantum computing

May 30, 2012
Advancing quantum computing
Credit: Thinkstock

European researchers have made important advances in understanding the major stumbling block to realisation of quantum computers, a phenomenon known as decoherence.

The quest for quantum computers capable of performing tremendously complex calculations extremely quickly based on the exciting properties of has faced a major roadblock in the form of ‘decoherence’.

Whereas traditional computers rely on traditional ‘bits’ to code information, quantum computers rely on quantum bits, or qubits. Unlike traditional bits that are either 0 or 1, qubits can be both simultaneously via superposition, theoretically enabling truly parallel processing and tremendously increasing computing capability.

However, decoherence, or random changes in quantum states as a result of interactions with the environment, makes it difficult to control and exploit qubits.

For magnetic molecules, theory predicts three main contributions to decoherence, namely from nuclear spins, from intermolecular dipolar interactions and from phonons.

initiated the ‘Decoherence in magnetic molecules as qubits’ (DECMMQUBIT) project in order to study the above phenomena in spin qubit systems of molecular magnets. The goal was to enhance understanding and minimisation of decoherence to advance the frontiers of .As a first step, scientists chose two molecules (polyoxometalates) capable of being synthesised without nuclear spins. Theoretical studies demonstrated that they were quite likely to show single-molecule magnet (SMM) behaviour and thus were excellent candidates for spin qubits. The SMMs were subsequently synthesised and magnetically characterised.

The next stage was to prepare pure and magnetically diluted samples with which they demonstrated that application of a transverse magnetic field significantly decreased the contribution of dipolar interactions to decoherence.

Finally, coupling constants between phonons (quanta of vibrational energy) and different types of potassium bromide (KBr), cyanide (CN) two level systems were studied, with calculations supporting experimentally measured values.

Overall, DECMMQUBIT project researchers carried out experimental and theoretical studies on the three main contributors to decoherence of qubits. Continuation of the project findings should further facilitate understanding of magnetic molecules as quantum objects and help break down the existing barrier to future quantum computer development.

Explore further: Quantum physics just got less complicated

add to favorites email to friend print save as pdf

Related Stories

Quantum computer built inside a diamond

Apr 04, 2012

Diamonds are forever – or, at least, the effects of this diamond on quantum computing may be. A team that includes scientists from USC has built a quantum computer in a diamond, the first of its kind to include protection ...

12-qubits reached in quantum information quest

May 08, 2006

In the drive to understand and harness quantum effects as they relate to information processing, scientists in Waterloo and Massachusetts have benchmarked quantum control methods on a 12-Qubit system. Their research was performed ...

Recommended for you

Quantum physics just got less complicated

6 hours ago

Here's a nice surprise: quantum physics is less complicated than we thought. An international team of researchers has proved that two peculiar features of the quantum world previously considered distinct ...

Controlling light on a chip at the single-photon level

Dec 16, 2014

Integrating optics and electronics into systems such as fiber-optic data links has revolutionized how we transmit information. A second revolution awaits as researchers seek to develop chips in which individual ...

Fraud-proof credit cards possible with quantum physics

Dec 15, 2014

Credit card fraud and identify theft are serious problems for consumers and industries. Though corporations and individuals work to improve safeguards, it has become increasingly difficult to protect financial ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.