Advancing quantum computing

May 30, 2012
Advancing quantum computing
Credit: Thinkstock

European researchers have made important advances in understanding the major stumbling block to realisation of quantum computers, a phenomenon known as decoherence.

The quest for quantum computers capable of performing tremendously complex calculations extremely quickly based on the exciting properties of has faced a major roadblock in the form of ‘decoherence’.

Whereas traditional computers rely on traditional ‘bits’ to code information, quantum computers rely on quantum bits, or qubits. Unlike traditional bits that are either 0 or 1, qubits can be both simultaneously via superposition, theoretically enabling truly parallel processing and tremendously increasing computing capability.

However, decoherence, or random changes in quantum states as a result of interactions with the environment, makes it difficult to control and exploit qubits.

For magnetic molecules, theory predicts three main contributions to decoherence, namely from nuclear spins, from intermolecular dipolar interactions and from phonons.

initiated the ‘Decoherence in magnetic molecules as qubits’ (DECMMQUBIT) project in order to study the above phenomena in spin qubit systems of molecular magnets. The goal was to enhance understanding and minimisation of decoherence to advance the frontiers of .As a first step, scientists chose two molecules (polyoxometalates) capable of being synthesised without nuclear spins. Theoretical studies demonstrated that they were quite likely to show single-molecule magnet (SMM) behaviour and thus were excellent candidates for spin qubits. The SMMs were subsequently synthesised and magnetically characterised.

The next stage was to prepare pure and magnetically diluted samples with which they demonstrated that application of a transverse magnetic field significantly decreased the contribution of dipolar interactions to decoherence.

Finally, coupling constants between phonons (quanta of vibrational energy) and different types of potassium bromide (KBr), cyanide (CN) two level systems were studied, with calculations supporting experimentally measured values.

Overall, DECMMQUBIT project researchers carried out experimental and theoretical studies on the three main contributors to decoherence of qubits. Continuation of the project findings should further facilitate understanding of magnetic molecules as quantum objects and help break down the existing barrier to future quantum computer development.

Explore further: Deeper understanding of quantum fluctuations in 'frustrated' layered magnetic crystals

add to favorites email to friend print save as pdf

Related Stories

Quantum computer built inside a diamond

Apr 04, 2012

Diamonds are forever – or, at least, the effects of this diamond on quantum computing may be. A team that includes scientists from USC has built a quantum computer in a diamond, the first of its kind to include protection ...

12-qubits reached in quantum information quest

May 08, 2006

In the drive to understand and harness quantum effects as they relate to information processing, scientists in Waterloo and Massachusetts have benchmarked quantum control methods on a 12-Qubit system. Their research was performed ...

Recommended for you

First glimpse inside a macroscopic quantum state

Mar 27, 2015

In a recent study published in Physical Review Letters, the research group led by ICREA Prof at ICFO Morgan Mitchell has detected, for the first time, entanglement among individual photon pairs in a beam ...

Theory of the strong interaction verified

Mar 26, 2015

The fact that the neutron is slightly more massive than the proton is the reason why atomic nuclei have exactly those properties that make our world and ultimately our existence possible. Eighty years after ...

3,000 atoms entangled with a single photon

Mar 25, 2015

Physicists from MIT and the University of Belgrade have developed a new technique that can successfully entangle 3,000 atoms using only a single photon. The results, published today in the journal Nature, repres ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.