Record-breaking radio waves discovered from ultra-cool star

Apr 30, 2012
Penn State University astronomers using the world's largest radio telescope at Arecibo, Puerto Rico, have discovered flaring radio emissions from the ultra-cool star J1047+21, known as a brown dwarf, which is not much warmer than the planet Jupiter, shattering the previous record for the lowest temperature at which radio waves had been detected from a star. The detection technique may be used to hunt for giant planets outside our solar system. The leader of the discovery team also led the discovery of the first planets ever found outside our solar system. This image is an artist's impression of a brown dwarf. Credit: R. Hurt/NASA

Penn State University astronomers using the world's largest radio telescope, at Arecibo, Puerto Rico, have discovered flaring radio emission from an ultra-cool star, not much warmer than the planet Jupiter, shattering the previous record for the lowest stellar temperature at which radio waves were detected.

The team from Penn State's Department of Astronomy and Astrophysics and the Center for and Habitable Worlds, led by Alex Wolszczan, the discoverer of the first planets ever found outside our solar system, has been using the giant 305-m (1000-ft) telescope to look for from a class of objects known as brown dwarfs. These objects are small, cold stars that bridge the gap between Jupiter-like giant planets and normal, more-massive, hydrogen-fusing stars. The astronomers hit the jackpot with a star named J1047+21, a brown dwarf 33.6 light years away in the , in a result that could boost the odds of discovering life elsewhere in the universe.

Penn State University astronomers using the world's largest radio telescope at Arecibo, Puerto Rico, have discovered flaring radio emissions from the ultra-cool star J1047+21, known as a brown dwarf, which is not much warmer than the planet Jupiter, shattering the previous record for the lowest temperature at which radio waves had been detected from a star. The detection technique may be used to hunt for giant planets outside our solar system. The leader of the discovery team also led the discovery of the first planets ever found outside our solar system. This artist's impression shows the relative sizes and colors of the Sun, a red dwarf (M-dwarf), a hotter brown dwarf (L-dwarf), a cool brown dwarf (T-dwarf) similar to J1047+21, and the planet Jupiter. Credit: NASA/IPAC/R. Hurt (SSC)

Matthew Route, a graduate student at Penn State and the lead author of the discovery paper, said, "This object is the coolest brown dwarf ever detected emitting -- it's half the temperature of the previous record holder, making it only about five times hotter than Jupiter."

The new radio-star is much smaller and colder than our Sun. With a surface temperature not much higher than that of a giant planet, and a size comparable to Jupiter's, it is scarcely visible in . Yet the radio flares seen at Arecibo show it must have a strong magnetic field, implying that the same could be true of other similar stars.

Wolszczan, an Evan Pugh Professor of Astronomy and Astrophysics and the leader of the project, said, "This is a really exciting result. We hope that in the future we'll be able to detect yet colder brown dwarfs, and possibly even around other stars."

The possibility that young, hot planets around other stars could be detected in the same manner -- because they still maintain strong magnetic fields -- has implications for the chances of finding life elsewhere in our Milky Way Galaxy, Wolszczan explained. "The Earth's field protects life on its surface from harmful particles of the solar wind. Knowing whether planetary magnetic fields are common or not throughout the Galaxy will aid our efforts to understand chances that life may exist beyond the Solar System."

The discovery of radio signals from J1047+21 dramatically broadens the window through which astronomers can study the atmospheres and interiors of these tiny stars, using the radio detection of their magnetic fields as a tool. At the temperature of this brown dwarf, its atmosphere must be made of neutral gas, which would not give off radio signals like those seen. SO The energy to drive the signals is likely to come from magnetic fields deep inside the star, similar to the field that protects the Earth from dangerous high-energy particles. By monitoring the radio flares from J1047+21, astronomers will be able to tell how stable the magnetic field is over time, and, from flare duration, they can infer the size of the emitter itself. The results were published in the March 10 2012 edition of the Letters section of the Astrophysical Journal.

Explore further: Image: NGC 6872 in the constellation of Pavo

Related Stories

Astronomers detect coolest radio star

Apr 18, 2012

(Phys.org) -- Astronomers using the world's largest radio telescope, at Arecibo, Puerto Rico, have discovered flaring radio emission from an ultra-cool star, not much warmer than the planet Jupiter, shattering the previous ...

Brown Dwarfs Beaming Like Pulsars

Apr 18, 2007

Brown dwarfs, thought just a few years ago to be incapable of emitting any significant amounts of radio waves, have been discovered putting out extremely bright "lighthouse beams" of radio waves, much like ...

Brown dwarf pair mystifies astronomers

Dec 21, 2009

(PhysOrg.com) -- Two brown dwarf-sized objects orbiting a giant old star show that planets may assemble around stars more quickly and efficiently than anyone thought possible, according to an international ...

Recommended for you

Image: NGC 6872 in the constellation of Pavo

7 hours ago

This picture, taken by the NASA/ESA Hubble Space Telescope's Wide Field Planetary Camera 2 (WFPC2), shows a galaxy known as NGC 6872 in the constellation of Pavo (The Peacock). Its unusual shape is caused ...

Measuring the proper motion of a galaxy

8 hours ago

The motion of a star relative to us can be determined by measuring two quantities, radial motion and proper motion. Radial motion is the motion of a star along our line of sight. That is, motion directly ...

Gravitational waves according to Planck

Sep 22, 2014

Scientists of the Planck collaboration, and in particular the Trieste team, have conducted a series of in-depth checks on the discovery recently publicized by the Antarctic Observatory, which announced last ...

Infant solar system shows signs of windy weather

Sep 22, 2014

Astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA) have observed what may be the first-ever signs of windy weather around a T Tauri star, an infant analog of our own Sun. This may help ...

Finding hints of gravitational waves in the stars

Sep 22, 2014

Scientists have shown how gravitational waves—invisible ripples in the fabric of space and time that propagate through the universe—might be "seen" by looking at the stars. The new model proposes that ...

How gamma ray telescopes work

Sep 22, 2014

Yesterday I talked about the detection of gamma ray bursts, intense blasts of gamma rays that occasionally appear in distant galaxies. Gamma ray bursts were only detected when gamma ray satellites were put ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

Pyle
5 / 5 (3) Apr 30, 2012
So cool.
We learn so much from a handful of photons traveling from over 300 trillion kilometers away. Just think of all of the information we aren't processing that is bombarding us everyday. 24x7 for millions of years (presumably) photons from that same star were colliding with matter all over the Earth and Earth was oblivious to it. Now we have turned an ear to it. What will it tell us?
Eoprime
not rated yet May 07, 2012
So cool.


Would be even more cool to know HOW cool in fact this star is.
I will try to guess: roughly 640°K?
128K for Jupiter outermost cloudlayer times 5

Would be ok for T-Clas but where is the record?
We found Y-Type brown dwarfs some months ago? right? (<500°K)
Record afair: 298K (WISE 1828+2650)

Where is the error?