Scale-out processors: Bridging the efficiency gap between servers and emerging cloud workloads

Mar 21, 2012

Cloud computing has emerged as a dominant computing platform providing billions of users world-wide with online services. The software applications powering these services, commonly referred to as scale-out workloads and which include web search, social networking and business analytics, tend to be characterized by massive working sets, high degrees of parallelism, and real-time constraints – features that set them apart from desktop, parallel and traditional commercial server applications.

To support the growing popularity and continued expansion of cloud services, providers must overcome the physical space and power constraints that limit the growth of data centers. Problematically, the predominant processor micro-architecture is inherently inefficient for running these demanding scale-out workloads, which results in low compute density and poor trade-offs between performance and energy. Continuing the current trends for data production and analysis will further exacerbate these inefficiencies.

Improving the cloud’s computational resources whilst operating within physical constraints requires server efficiency to be optimized in order to ensure that server hardware meets the needs of scale-out workloads.

To this end, the team of HiPEAC member Babak Falsafi, a Professor in the School of Computer and Communication Sciences at EPFL, the director of the EcoCloud research center at EPFL (founded to innovate future energy-efficient and environmentally friendly cloud technologies), presented Clearing the Clouds: A Study of Emerging Workloads on Modern Hardware, which received the best paper award as ASPLOS 2012. ASPLOS is a flagship international computer systems venue with a high citation index.

“While we have been studying and tuning conventional server workloads (such as transaction processing and decision support) on hardware for over a decade, we really wanted to see how emerging scale-out workloads in modern datacenters behave.” says Falsafi. “To our surprise, we found that much of a modern server processor’s hardware resources including the cores, caches and off-chip connectivity are overprovisioned when running scale-out workloads leading to huge inefficiencies.”

Mike Ferdman, a senior PhD student team member explains: “efficiently executing scale-out workloads requires optimizing the instruction-fetch path for up to a few megabytes of program instructions, reducing the core complexity while increasing core counts, and shrinking the capacity of on-die caches to reduce area and power overheads.”

Scale-out Processors

“The insights from the evaluation are now driving us to develop server processors tuned to the demands of scale-out ”, says Boris Grot a postdoctoral team member. “In a paper that will appear in the flagship computer architecture conference, ISCA, this year, our team proposes the Scale-Out Processor, a processor organization that unlike current industrial chip design trends does away with power-hungry cores and much of on-die cache capacity and network fabric to free area and power for a large number of simple cores built around a streamlined memory hierarchy.” Not only do these improvements lead to greater performance and efficiency at the level of each chip, they also enable a net reduction in the total cost of ownership in datacenters.

Explore further: Supercomputer for astronomy 'ATERUI' upgraded to double its speed

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

After a data breach, it's consumers left holding the bag

14 minutes ago

Shoppers have launched into the holiday buying season and retailers are looking forward to year-end sales that make up almost 20% of their annual receipts. But as you check out at a store or click "purchase" on your online shopping cart ...

Can we create an energy efficient Internet?

23 minutes ago

With the number of Internet connected devices rapidly increasing, researchers from Melbourne are starting a new research program to reduce energy consumption of such devices.

Brain inspired data engineering

1 hour ago

What if next-generation ICT systems could be based on the brain's structure and its cognitive and adaptive processes? A groundbreaking paradigm of brain-inspired intelligent ICT architectures is being born.

E-Voting: Risky technology or great improvement?

1 hour ago

On this forthcoming weekend the Australian state election takes place, and in Victoria State they will be using a new e-voting system to improve secrecy, reliability and user-friendliness. But how secure are such systems? ...

Faradair team determined to make hybrid BEHA fly

2 hours ago

Aiming to transform their concept into a real success, the Faradair team behind a six-seat Bio-Electric-Hybrid-Aircraft (BEHA) have taken this hybrid aircraft project into a crowdfunding campaign on Kickstarter. ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.