Scientists create potent molecules aimed at treating muscular dystrophy

February 22, 2012

While RNA is an appealing drug target, small molecules that can actually affect its function have rarely been found. But now scientists from the Florida campus of The Scripps Research Institute have for the first time designed a series of small molecules that act against an RNA defect directly responsible for the most common form of adult-onset muscular dystrophy.

In two related studies published recently in online-before-print editions of and ACS , the scientists show that these novel compounds significantly improve a number of biological defects associated with myotonic dystrophy type 1 in both cell culture and animal models.

"Our compounds attack the root cause of the disease and they improve defects in animal models," said Scripps Research Associate Professor Matthew Disney, PhD. "This represents a significant advance in rational design of compounds targeting RNA. The work not only opens up potential therapies for this type of muscular dystrophy, but also paves the way for RNA-targeted therapeutics in general."

Myotonic dystrophy type 1 involves a type of RNA defect known as a "triplet repeat," a series of three nucleotides repeated more times than normal in an individual's genetic code. In this case, the repetition of the cytosine-uracil-guanine (CUG) in leads to disease by binding to a particular protein, MBNL1, rendering it inactive. This results in a number of protein splicing abnormalities. Symptoms of this variable disease can include wasting of the muscles and other , cataracts, , and hormone changes.

To find compounds that acted against the problematic RNA in the disease, Disney and his colleagues used information contained in an RNA motif-small molecule database that the group has been developing. By querying the database against the secondary structure of the triplet repeat that causes myotonic dystrophy type 1, a lead compound targeting this RNA was quickly identified. The lead compounds were then custom-assembled to target the expanded repeat or further optimized using computational chemistry. In animal models, one of these compounds improved protein-splicing defects by more than 40 percent.

"There are limitless RNA targets involved in disease; the question is how to find small molecules that bind to them," Disney said. "We've answered that question by rationally designing these compounds that target this RNA. There's no reason that other bioactive small molecules targeting other RNAs couldn't be developed using a similar approach."

Explore further: Toxic molecule may cause most common type of muscular dystrophy

More information: "Design of a Bioactive Small Molecule that Targets the Myotonic Dystrophy Type 1 RNA via an RNA Motif-Ligand Database & Chemical Similarity Searching",

"Rationally Designed Small Molecules Targeting the RNA That Causes Myotonic Dystrophy Type 1 Are Potently Bioactive",

Related Stories

Scientists create novel RNA repair technology

January 18, 2012

Scientists from the Florida campus of The Scripps Research Institute have identified a compound that can help repair a specific type of defect in RNA, a type of genetic material. The methods in the new study could accelerate ...

Recommended for you

New polymer creates safer fuels

October 1, 2015

Before embarking on a transcontinental journey, jet airplanes fill up with tens of thousands of gallons of fuel. In the event of a crash, such large quantities of fuel increase the severity of an explosion upon impact. Researchers ...

Researchers print inside gels to create unique shapes

September 30, 2015

(—A team of researchers at the University of Florida has taken the technique of printing objects inside of a gel a step further by using a highly shear-rate sensitive gel. In their paper published in the journal ...

How a molecular motor untangles protein

October 1, 2015

A marvelous molecular motor that untangles protein in bacteria may sound interesting, yet perhaps not so important. Until you consider the hallmarks of several neurodegenerative diseases—Huntington's disease has tangled ...

Anti-aging treatment for smart windows

October 1, 2015

Electrochromic windows, so-called 'smart windows', share a well-known problem with rechargeable batteries – their limited lifespan. Researchers at Uppsala University have now worked out an entirely new way to rejuvenate ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.