Researchers discover one of the most porous materials to date

Jan 04, 2012

The delivery of pharmaceuticals into the human body or the storage of voluminous quantities of gas molecules could now be better controlled, thanks to a study by University of Pittsburgh researchers. In a paper published online today in Nature Communications, a team of chemists and colleagues from Pitt's Kenneth P. Dietrich School of Arts and Sciences and the Pitt School of Medicine and Northwestern and Durham universities have posed an alternative approach toward building porous materials.

Working with metal-organic frameworks—crystalline compounds comprising metal- cluster vertices linked together by organic molecules to form one-, two-, or three-dimensional porous structures—researchers addressed changing the size of the vertex (the metal cluster) rather than the length of the organic molecule links, which resulted in the largest metal organic framework pore volume reported to date.

"Think of this the way you imagine Tinkertoys®," said Nathaniel Rosi, principal investigator and assistant professor in Pitt's Department of Chemistry in the Dietrich School. "The metal clusters are your joints, and the organic molecules are your linkers. In order to build a highly open structure with lots of empty space, you can increase the linker length or you can increase the size of the joint. We developed chemistry to make large joints, or vertices, and showed that we could link these together to build a material with extraordinarily large pores for this class of materials.

"Essentially, we're like architects. We first make a blueprint for a target material, and we then select our building blocks for construction," added Rosi. "We develop methods for designing structures and controlling the assembly of these structures on a molecule-by- molecule basis."

Rosi and Jihyun An, who graduated with a PhD degree in chemistry from Pitt in 2011 and is lead author of the paper, said this new approach could have an impact on storing large quantities of gas such as carbon dioxide or methane, an important development for alternative energy, or large amounts of drug molecules, which could impact the drug-delivery field. Since joining Pitt five years ago, Rosi has developed a lab that includes students and postdoctoral researchers from various chemistry-related disciplines and focuses on new methods for materials' design and discovery.

Explore further: Team pioneers strategy for creating new materials

Provided by University of Pittsburgh

3.3 /5 (3 votes)

Related Stories

Porous crystals for natural gas storage

Nov 06, 2011

(PhysOrg.com) -- Porous crystals called metal-organic frameworks, with their nanoscopic pores and incredibly high surface areas, are excellent materials for natural gas storage. But with millions of different ...

Researchers invent a switch that could improve electronics

Dec 01, 2011

Researchers at the University of Pittsburgh have invented a new type of electronic switch that performs electronic logic functions within a single molecule. The incorporation of such single-molecule elements could enable ...

MTU Paper Among 'Most Accessed' in Advanced Materials

May 11, 2010

(PhysOrg.com) -- A paper by Michigan Tech faculty member Yun Hang Hu has been ranked among the most accessed articles in the prestigious journal Advanced Materials (impact factor 8.191) for the month of March. ...

Innovation in Nanoporous Chemistry

Sep 30, 2005

Science researchers from the University of Versailles (France), in collaboration with the ID31 beam line at the European Synchrotron Radiation Facility (ESRF), report their progress in the design and characterisation of microporous ...

Recommended for you

Team pioneers strategy for creating new materials

Aug 29, 2014

Making something new is never easy. Scientists constantly theorize about new materials, but when the material is manufactured it doesn't always work as expected. To create a new strategy for designing materials, ...

Plug n' Play protein crystals

Aug 29, 2014

Almost a hundred years ago in 1929 Linus Pauling presented the famous Pauling's Rules to describe the principles governing the structure of complex ionic crystals. These rules essentially describe how the ...

Breaking benzene

Aug 27, 2014

Aromatic compounds are found widely in natural resources such as petroleum and biomass, and breaking the carbon-carbon bonds in these compounds plays an important role in the production of fuels and valuable ...

User comments : 0