Darpa developing novel new fire suppression method

Jan 23, 2012

Researchers focus on electricity as possible safe and environmentally friendly means to fight fire.

TIME Magazine highlighted a DARPA-developed fire-suppression technology naming it among the 50 best inventions of 2011.

Fire in a combat vehicle, aboard a ship or other confined space such as an airplane cockpit puts warfighters at risk. Today’s fire suppression technologies are many decades old and focus largely on disrupting the chemical reactions involved in combustion by spraying water, foams or other chemicals on the . The key to transformative firefighting approaches may lie in the fundamentals of fire itself.

This video is not supported by your browser at this time.

While water primarily cools a flame, carbon dioxide suffocates it by diluting the surrounding oxygen. Chemical suppressants such as halons work to disrupt the combustion process. These technologies suffer from limitations such as collateral damage to valuable property, environmental toxicity and limited effectiveness in different types of fire. All existing suppressants are composed of matter and must be physically delivered and dispersed throughout the fire. This limits the rate at which fires can be extinguished and the ability to combat fires in confined spaces or behind obstacles.

According to Matthew Goodman, program manager, “we successfully suppressed small flames and limited re-ignition of those flames, as well as exhibited the ability to bend flames. These effects, to date are very local—scaling is a challenge that remains to be overcome.”

DARPA's Instant (IFS) program, which ended recently, sought to establish the feasibility of a novel flame-suppression system based on destabilization of flame plasma with electromagnetic fields and acoustics techniques. The DARPA research team at Harvard University has demonstrated suppression of small methane and related fuel fires by using a hand-held electrode, or wand.

“We’ve made scientific breakthroughs in our understanding and quantification of the interaction between electromagnetic and acoustic waves with flame plasma,” said Goodman. “Our goal was to advance understanding of this interaction and its applicability to flame plasma for suppressing flames.”

Explore further: Lockheed Martin advances live, virtual, constructive training in flight test

add to favorites email to friend print save as pdf

Related Stories

FLEX-ible insight into flame behavior

Nov 30, 2011

(PhysOrg.com) -- Whether free-burning or smoldering, uncontrolled fire can threaten life and destroy property. On Earth, a little water, maybe some chemicals, and the fire is smothered.

Space Image: Aflame

Jun 24, 2011

Fire acts differently in space than on Earth. Sandra Olson, an aerospace engineer at NASA's Glenn Research Center, demonstrates just how differently in her art. This artwork is comprised of multiple overlays ...

Candle flames contain millions of tiny diamonds

Aug 18, 2011

(PhysOrg.com) -- The flickering flame of a candle has generated comparisons with the twinkling sparkle of diamonds for centuries, but new research has discovered the likeness owes more to science than the ...

Recommended for you

Reducing traffic congestion, remotely

13 hours ago

At the Intelligent Transportation Systems World Congress last week, MIT researchers received one of the best-paper awards for a new system, dubbed RoadRunner, that uses GPS-style turn-by-turn directions to ...

How to print your own cell phone microscope for pennies

13 hours ago

At one o'clock in the morning, layers of warm plastic are deposited on the platform of the 3D printer that sits on scientist Rebecca Erikson's desk. A small plastic housing, designed to fit over the end of ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Jeddy_Mctedder
1 / 5 (1) Jan 23, 2012
bizzare but if this amounts to a true and total solution it will be revolutionary