Gene discovery explains how fruit flies retreat from heat

Dec 15, 2011
fruit fly

A discovery in fruit flies may be able to tell us more about how animals, including humans, sense potentially dangerous discomforts.

Researchers at Duke University Medical Center uncovered naturally occurring variations of a gene named that is important for the function of pain-sensing neurons throughout the animal kingdom. The gene makes an , which floods with when the fly is near a heat source, causing fruit fly larvae to respond with a corkscrew-style rolling motion away from the heat source (movie link shows an escaping larva).

The team, led by co-authors Lixian Zhong, Ph.D. and Andrew Bellemer Ph.D., of Duke Department of Anesthesiology, found a 37-amino-acid section of nearly four identical that controls the responses of the proteins to temperature. The larvae start their nociception () escape roll at just over 100 degrees Fahrenheit (39 degrees Celsius).

Senior author Dan Tracey, Ph.D., associate professor of anesthesiology, cell biology and neurobiology, said these discoveries could have a bearing on injured people with in damaged tissues or people with allodynia, who perceive even modest changes in temperature as painful. Even spontaneous pain that occurs in pathological pain states might be explained if the human versions of these channels were to open inappropriately at the normal body temperature, Tracey said.

The work was published in the inaugural issue of Cell Reports on Thursday, Dec. 15.

Interestingly, the authors found that the version of TRPA1 that is necessary for detecting the painful temperatures was not a direct temperature sensor. Tracey said this discovery suggests that TRPA1 channels may play an important role in sensing other kinds of pain besides temperature.

The four proteins vary in only two small sections. The scientists were able to find a 37-amino acid section in two of the variants that was important for sensing hot temperature.

Interestingly, many noxious chemicals that trigger painful sensations, including wasabi and tear gas, also activate the TRPA1 channel in humans and . The variants identified by the Duke team all respond to these noxious chemicals but vary in their responses to temperature. Finding similar variants in humans may give important insights into pain-sensing.

"Typically heat responses of nociception channels are tested with artificially made mutants, but our study involved four natural gene variants, two of which were related to the avoidance behavior we could observe under the microscope," said Tracey, who directs the Molecular Pain Signaling Laboratory at Duke. "Because evolution created these variants, we had more confidence that the amino-acid section we found was particularly important. We had clues there were unknown versions of this gene, so we were pleased to find the relevant part of the proteins that allows for heat-sensing and nociception."

Explore further: Genetic code of the deadly tsetse fly unraveled

Related Stories

Flies' evasive move traced to sensory neurons

Nov 29, 2007

When fruit fly larvae are poked or prodded, they fold themselves up and corkscrew their bodies around, a behavior that appears to be the young insects’ equivalent of a “judo move,” say researchers reporting online on ...

Mutation causes intense pain

Jun 09, 2010

A mutation that enhances the function of a specific ion channel has been identified as the cause of a rare inherited pain disorder. The research, published by Cell Press in the June 10 issue of the journal Neuron, propos ...

Recommended for you

Genetic code of the deadly tsetse fly unraveled

3 hours ago

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.

Engineered E. coli produces high levels of D-ribose

4 hours ago

D-ribose is a commercially important sugar used as a sweetener, a nutritional supplement, and as a starting compound for synthesizing riboflavin and several antiviral drugs. Genetic engineering of Escherichia co ...

User comments : 0

More news stories

Genetic code of the deadly tsetse fly unraveled

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.

Ocean microbes display remarkable genetic diversity

The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live i ...

Cell resiliency surprises scientists

New research shows that cells are more resilient in taking care of their DNA than scientists originally thought. Even when missing critical components, cells can adapt and make copies of their DNA in an alternative ...

One in 13 US schoolkids takes psych meds

(HealthDay)—More than 7 percent of American schoolchildren are taking at least one medication for emotional or behavioral difficulties, a new government report shows.

FDA reconsiders behavior-modifying 'shock devices'

(HealthDay)—They're likened to a dog's "shock collar" by some and called a "life-saving treatment" by others. But the days of electro-shock devices as a tool for managing hard-to-control behavior in people ...

Computer program could help solve arson cases

Sifting through the chemical clues left behind by arson is delicate, time-consuming work, but University of Alberta researchers teaming with RCMP scientists in Canada, have found a way to speed the process.