NASA to support IU astronomer's quest to develop largest-ever star formation database

Nov 21, 2011

(PhysOrg.com) -- Samir Salim has a lot of space to fit into a new NASA-funded database; about 11 million galaxies of it would be a ballpark estimate based on the number of galaxies for which distances can be estimated to about 3.5 billion light years, what astronomers still refer to as the relatively "local" universe. But the Indiana University astronomer and research scientist believes the vast archives produced by NASA space telescopes and ground-based observatories hold the right information to create the largest resource ever for the study of how star formation proceeds in galaxies.

By integrating the measurements of the of galaxies from four projects -- the two (GALEX) and Wide-Field Explorer (WISE), and two ground-based projects, the Sloan Digital Sky Survey (SDSS) and the Two Micron All-Sky Survey (2MASS) -- an international team led by Salim hopes to use novel galaxy modeling techniques to produce a single database of the physical properties of millions of galaxies.

That database will involve constructing spectral energy distributions (SEDs) for 11 million galaxies, a resource that will use wide-field, multi-wavelength observations at a scale that does not currently exist. The SED of a galaxy is the quantification of the electromagnetic radiation it distributes over the full range of frequency and wavelength, from ultraviolet to far infrared, and analysis of that multi-wavelength radiation is a primary means of learning about and evolution.

The team may have selfish reasons for developing such a huge database: They want to focus on so-called transitional galaxies that have subdued star formation activity and that may be transforming from what are known as spiral galaxies to more bland-looking . They argue that the study of star formation regulation requires large galaxy samples in order to identify and analyze trends for robust statistical significance.

"And in order to reveal the physical processes behind star formation regulation, these large samples require reliable, well-calibrated sets of fundamental galaxy physical properties like star formation rates, stellar mass, dust content, stellar age and stellar metallicity," Salim said. "For this purpose we proposed building a database of galaxies in the local universe combing the data from GALEX, 2MASS, WISE and SDSS, based on which we will derive these physical properties using the techniques of modeling galaxy evolution. Both the SEDs and the physical parameters will be included in the database that will be made publicly available."

Each of the four studies provides a unique type of data to the creation of the SEDs. The GALEX photometry, for example, used a telescope that swept the sky for ultraviolet light sources, or frequencies higher than those humans identify as the color violet. It provided the necessary sensitivity to low levels of star formation that will be needed to separate transitional galaxies from true "red and dead" passive galaxies.

Salim, who joined IU's Astronomy Department in September 2009, is no stranger to GALEX and its primary science mission of studying galaxy evolution. After earning his Ph.D. from Ohio State University in 2002, he went on to work as a GALEX postdoctoral researcher at University of California, Los Angeles, until 2006. Before coming to IU, he was at the National Optical Astronomy Observatory (NOAO) in Tucson as a research associate, where he compared and contrasted star-forming properties of galaxies derived from GALEX with mid-infrared emissions recorded by the Spitzer Space Telescope.

Work on the database will begin next year and is expected to run into 2015, with NASA expected to provide about $330,000 for the work. Recent results from Salim's continuing work employing multi-wavelength observations to study star formation have included the discovery of observational evidence for active galactic nuclei feedback in transitional galaxies; establishing of the robust SED fitting technique to derive galaxy's star formation rates and stellar masses; identification of intermediate-age populations as the significant source of mid-infrared dust heating; and the discovery of early-type with extended star forming regions.

Explore further: Astronomers find evidence of water clouds in brown dwarf atmosphere

add to favorites email to friend print save as pdf

Related Stories

A cosmic exclamation point

Aug 12, 2011

(PhysOrg.com) -- VV 340, also known as Arp 302, provides a textbook example of colliding galaxies seen in the early stages of their interaction. The edge-on galaxy near the top of the image is VV 340 North ...

New stars from old gas surprise astronomers

Feb 18, 2009

(PhysOrg.com) -- Evidence of star birth within a cloud of primordial gas has given astronomers a glimpse of a previously unknown mode of galaxy formation. The cloud, known as the Leo Ring, appears to lack ...

Herschel paints new story of galaxy evolution

Sep 13, 2011

(PhysOrg.com) -- ESA's Herschel infrared space observatory has discovered that galaxies do not need to collide with each other to drive vigorous star birth. The finding overturns this long-held assumption ...

Survey Reveals Building Block Process For Biggest Galaxies

Apr 12, 2006

A new study of the universe's most massive galaxy clusters shows how mergers play a critical role in their evolution. Astronomers used the twin Gemini Observatory instruments in Hawaii and Chile, and the Hubble Space Telescope ...

Hubble captures image of the Arp 274 group of galaxies

Aug 25, 2011

(PhysOrg.com) -- Arp 274, also known as NGC 5679, is a system of three galaxies that appear to be partially overlapping in the image, although they may be at somewhat different distances. The spiral shapes ...

Space Telescope Moves on with One Detector

Apr 13, 2010

(PhysOrg.com) -- Mission engineers and scientists with NASA's Galaxy Evolution Explorer, a space telescope that has been beaming back pictures of galaxies for three times its design lifespan, are no longer ...

Recommended for you

Witnessing the early growth of a giant

20 hours ago

Astronomers have uncovered for the first time the earliest stages of a massive galaxy forming in the young Universe. The discovery was made possible through combining observations from the NASA/ESA Hubble ...

Evidence for supernovas near Earth

Aug 27, 2014

Once every 50 years, more or less, a massive star explodes somewhere in the Milky Way. The resulting blast is terrifyingly powerful, pumping out more energy in a split second than the sun emits in a million ...

What lit up the universe?

Aug 27, 2014

New research from UCL shows we will soon uncover the origin of the ultraviolet light that bathes the cosmos, helping scientists understand how galaxies were built.

User comments : 0