'Synthetic biology' could replace oil for chemical industry

September 14, 2011

Vats of blue-green algae could one day replace oil wells in producing raw materials for the chemical industry, a UC Davis chemist predicts.

Shota Atsumi, an assistant professor of chemistry, is using "synthetic biology" to create cyanobacteria, or blue-green algae, that convert carbon dioxide in the air into complex hydrocarbons, all powered by sunlight.

Cyanobacteria are single-celled organisms that, like , can use sunlight to turn carbon dioxide and water into sugars and other carbohydrates.

The U.S. Department of Energy has set a goal of obtaining a quarter of from biological processes by 2025. Today 99 percent of the raw materials used to make paint, plastics, fertilizers, pharmaceuticals and other chemical products come from petroleum or natural gas, according to Atsumi.

While some chemicals, such as biofuels, can be obtained from converted , plants are relatively slow to grow, and using farms to grow fuel takes arable land out of food production.

Instead, Atsumi is engineering cyanobacteria to make chemicals they do not make in nature. By carefully analyzing genes in these and other organisms, his team will assemble artificial and put them into living cells.

"We can use genes as building blocks to create these new functions," Atsumi said.

Explore further: From microbes to hydrogen fuel

Related Stories

From microbes to hydrogen fuel

March 24, 2009

Searching for an environmentally friendly way to produce cheap hydrogen as a fuel, researchers at Oregon State University are turning to microbes that have been doing the job for billions of years.

What makes a plant a plant?

June 15, 2011

Although scientists have been able to sequence the genomes of many organisms, they still lack a context for associating the proteins encoded in genes with specific biological processes. To better understand the genetics underlying ...

Project could help colonize space

August 2, 2011

Humans may move one step closer to colonizing space thanks to a new research project that NASA is funding at South Dakota State University, the South Dakota School of Mines and Technology and Oglala Lakota College.

Recommended for you

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

New 'self-healing' gel makes electronics more flexible

November 25, 2015

Researchers in the Cockrell School of Engineering at The University of Texas at Austin have developed a first-of-its-kind self-healing gel that repairs and connects electronic circuits, creating opportunities to advance the ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...

Atom-sized craters make a catalyst much more active

November 24, 2015

Bombarding and stretching an important industrial catalyst opens up tiny holes on its surface where atoms can attach and react, greatly increasing its activity as a promoter of chemical reactions, according to a study by ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.