Webb Telescope's MIRI flight instrument completes cryogenic testing in the UK

August 18, 2011
The Mid-Infrared Instrument underwent testing inside the thermal space test chamber at the Science and Technology Facilities Council's Rutherford Appleton Laboratory Space in Oxfordshire, U.K. Credit: RAL

A pioneering camera and spectrometer that will fly aboard NASA's James Webb Space Telescope has completed cryogenic testing designed to mimic the harsh conditions it will experience in space. The Mid-Infrared Instrument (MIRI) underwent testing inside the thermal space test chamber at the Science and Technology Facilities Council's Rutherford Appleton Laboratory (RAL) Space in Oxfordshire, U.K. The sophisticated instrument is designed to examine the first light in the universe and the formation of planets around other stars.

A team of more than 50 scientists from 11 countries tested MIRI for 86 days, representing the longest and most exhaustive testing at of an astronomy instrument in Europe prior to delivery for its integration into a spacecraft.

"The successful completion of the test program, involving more than 2,000 individual tests, marks a major milestone for the Webb telescope mission," said Matthew Greenhouse, Webb telescope project scientist for the Science , at NASA's Goddard Space Flight Center in Greenbelt, Md.

The Mid-Infrared Instrument undergoing alignment testing at the RAL. Credit: RAL

Along with the Webb telescope's other instruments, MIRI will help scientists better understand how the universe formed following the Big Bang and ultimately developed star systems that may be capable of supporting life. In particular, scientists hope to explore young planets around distant stars that are shrouded by gas and dust when viewed in visible light. Because infrared light penetrates these obstructions, MIRI can acquire images of planetary nurseries sharper than ever before possible. With its spectrometer, MIRI could potentially reveal the existence of water on these planets as well, informing future investigations into their for humans.

To capture some of the earliest, infrared light in the cosmos, MIRI has to be cooled to 7 Kelvin (-266 Celsius/-447 Fahrenheit), which brings tough challenges for testing the instrument. Inside the RAL Space thermal space test chamber, specially constructed shrouds, cooled to 40K (-233C/-388F), surround MIRI while scientists observe simulated background stars. The tests were designed to ensure that MIRI can operate successfully in the cold vacuum of space and allow scientists to gather vital calibration and baseline data.

This is an artist's conception of the James Webb Space Telescope. Credit: NASA

The MIRI team is now analyzing data from the cryogenic test campaign, completing remaining "warm testing," and will prepare the for delivery to NASA Goddard. There it will be integrated with the other instruments, and the telescope.

"Thousands of astronomers will use the Webb telescope to extend the reach of human knowledge far beyond today's limits. Just as the Hubble Telescope rewrote textbooks everywhere, Webb will find new surprises and help to answer some of the most pressing questions in astronomy," said John Mather, Nobel laureate and Webb senior project scientist at NASA Goddard.

Explore further: Testing time for instrument on Hubble's successor

Related Stories

Testing time for instrument on Hubble's successor

December 6, 2007

A significant milestone for the Hubble Space Telescope successor, the James Webb Space Telescope (JWST), is on course to be reached before Christmas with the testing of the verification model of the Mid-InfraRed Instrument ...

James Webb Space Telescope Begins to Take Shape at Goddard

September 15, 2009

(PhysOrg.com) -- NASA's James Webb Space Telescope is starting to come together. A major component of the telescope, the Integrated Science Instrument Module structure, recently arrived at NASA Goddard Space Flight Center ...

New Video Reveals Secrets of Webb Telescope's MIRI (w/ Video)

December 29, 2009

(PhysOrg.com) -- It's going to take infrared eyes to see farther back in time than even the Hubble Space Telescope, and that's what the James Webb Space Telescope's MIRI or Mid-Infrared Instrument detectors will do. Now there's ...

Hubble's successor one step closer to completion

March 18, 2010

(PhysOrg.com) -- A working replica of MIRI - the pioneering camera and spectrometer for the James Webb Space Telescope - has just been shipped (16th March) from the Science and Technology Facilities Council’s Rutherford ...

Recommended for you

At Saturn, one of these rings is not like the others

September 2, 2015

When the sun set on Saturn's rings in August 2009, scientists on NASA's Cassini mission were watching closely. It was the equinox—one of two times in the Saturnian year when the sun illuminates the planet's enormous ring ...

New Horizons team selects potential Kuiper Belt flyby target

August 29, 2015

NASA has selected the potential next destination for the New Horizons mission to visit after its historic July 14 flyby of the Pluto system. The destination is a small Kuiper Belt object (KBO) known as 2014 MU69 that orbits ...

Prawn Nebula: Cosmic recycling

September 2, 2015

Dominating this image is part of the nebula Gum 56, illuminated by the hot bright young stars that were born within it. For millions of years stars have been created out of the gas in this nebula, material which is later ...

Image: Hubble sees a youthful cluster

August 31, 2015

Shown here in a new image taken with the Advanced Camera for Surveys (ACS) on board the NASA/ESA Hubble Space Telescope is the globular cluster NGC 1783. This is one of the biggest globular clusters in the Large Magellanic ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Eoprime
not rated yet Aug 22, 2011
Want it, now! :)

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.