New polymeric material brings companies one step closer to cheaper plastic solar cells and electronics

August 17, 2011
Flexible, organic solar cells - IMRE’s polymer can help save costs and resources in making devices like organic solar cells and next generation printed circuits on plastic. Credit: Agency for Science, Technology and Research (A*STAR)

A single polymer that can be used in both new age plastic electronics as well as plastic solar cells could spell greater cost-savings and open up new design options for electronic and solar cell companies. A*STAR’s IMRE has developed a new polymer that not only produces a high charge mobility of 0.2 cm2/V.s, which is the same value achieved by commercially available semiconducting materials but also has a high solar power conversion efficiency of 6.3%. This makes IMRE’s polymer one of the few that has both these properties. In addition to this, polymers of the same class as IMRE’s, which are those that use thiophene and benzothiadiazole as the building blocks, could only achieve 2.2% power conversion.

“Current polymers are usually good in one aspect or another, either as a good conductor for use in electronics or endowed with high efficiency - but not both”, said IMRE Senior Scientist, Dr. Chen Zhi Kuan, the principal researcher working on the polymers. “IMRE’s functions not only as a good material to make electronic components, the same material can be used to convert sunlight to electricity efficiently”. The polymer can also be easily applied in roll-to-roll printing techniques which is similar to how newspapers are currently printed making it possible to manufacture large area-scale printed electronics and organic quickly and cheaply.

With IMRE’s polymer, manufacturers could save cost using just a single bulk resource for making both printed electronics and organic solar cells. The material could also possibly be used in designing new devices where both power harnessing and electronics are needed in a single component. An example of this would be chemical sensors based on organic thin-film transistors and powered by organic solar cells.

“This breakthrough will help speed up the development of and organic solar cells, and make them more readily available in the marketplace,” said Prof Andy Hor, Executive Director of IMRE.

IMRE’s polymer has both high charge mobility and high power conversion efficiency in a single material as opposed to most polymers that have either one or the other, not both - A transmission electron microscopy image of the IMRE polymer, PC71BM film, showing phase separation between the polymer fibres (light) and PC71BM (dark). Credit: Agency for Science, Technology and Research (A*STAR)

Printed electronics often rely on organic materials like polymers that can be easily processed and manufactured as opposed to traditional electronics (or metal electronics) which rely on inorganics such as copper or silicon. The polymers can be made into thinner, lighter and cost-effective electronic components and organic solar cells.

The IMRE team is developing other organic materials-based polymers that can be scaled up to production and integrated easily into organic electronics. These materials can be used to make energy harvesting and low-power consumption devices like low-cost organic solar cells, new flexible display devices, next generation smart labels and RFID tags.

The research and results were recently published in Advanced Materials.

Explore further: SSRL Aids Development of Plastic Electronics

Related Stories

SSRL Aids Development of Plastic Electronics

May 4, 2006

For close to a decade, researchers have been trying to improve the performance of plastic semiconductors to the level of amorphous silicon—the semiconductor used in low-cost electronics such as photovoltaic cells for solar ...

Recommended for you

Brazilian wasp venom kills cancer cells by opening them up

September 1, 2015

The social wasp Polybia paulista protects itself against predators by producing venom known to contain a powerful cancer-fighting ingredient. A Biophysical Journal study published September 1 reveals exactly how the venom's ...

Naturally-occurring protein enables slower-melting ice cream

August 31, 2015

(Phys.org)—Scientists have developed a slower-melting ice cream—consider the advantages the next time a hot summer day turns your child's cone with its dream-like mound of orange, vanilla and lemon swirls with chocolate ...

Antibody-making bacteria promise drug development

August 31, 2015

Monoclonal antibodies, proteins that bind to and destroy foreign invaders in our bodies, routinely are used as therapeutic agents to fight a wide range of maladies including breast cancer, leukemia, asthma, arthritis, psoriasis, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.