Cellular laser microsurgery illuminates research in vertebrate biology

Aug 17, 2011

Using an ultrafast femtosecond laser, researchers at Tufts University in Medford, Mass., were able to label, draw patterns on, and remove individual melanocytes cells from a species of frog tadpole (Xenopus) without damaging surrounding cells and tissues. Melanocytes are the cells responsible for skin pigment; they also are descendants of a specific type of stem cell that has regenerative potential and other characteristics similar to some cancer cells.

By precisely marking and ablating these cells, the researchers were able to track how melanocytes migrated and regenerated within a live organism. The researchers hope this technique will enable new avenues of research in wound repair, regenerative medicine, and . The new method could also be used to study how certain organisms respond to spinal cord damage and how they are able to regenerate portions of their spinal cords.

According to the researchers, femtosecond lasers have already become important tools in biological studies because of the ability to affect highly localized tissues. The laser in their research, described in the August issue of the Optical Society's (OSA) open access journal Biomedical Optics Express, operated at a of 800 nm, which more readily affected melanocytes while protecting surrounding tissues. This highly selective characteristic enabled the study of cells both on the surface of the skin and in deeper tissue.

Explore further: Yellowstone's thermal springs—their colors unveiled

More information: Paper: "Patterned femtosecond-laser ablation of Xenopus Laevis melanocytes for studies of cell migration, wound repair, and developmental processes," Mondia et al., Biomedical Optics Express, Volume 2, Issue 8, pp. 2383-2391. www.opticsinfobase.org/boe/abs… cfm?uri=boe-2-8-2383

add to favorites email to friend print save as pdf

Related Stories

New findings on the formation of body pigment

Oct 16, 2009

(PhysOrg.com) -- The skin's pigment cells can be formed from completely different cells than has hitherto been thought, a new study from the Swedish medical university Karolinska Institutet shows. The results, which are published ...

Skin as a living coloring book

Sep 06, 2007

The pigment melanin, which is responsible for skin and hair color in mammals, is produced in specialized cells called melanocytes and then distributed to other cells. But not every cell in the complex layers of skin becomes ...

Bioelectrical signals turn stem cells' progeny cancerous

Oct 19, 2010

Biologists at Tufts University School of Arts and Sciences have discovered that a change in membrane voltage in newly identified "instructor cells" can cause stem cells' descendants to trigger melanoma-like ...

Stem cells used to reverse paralysis in animals

Jan 28, 2009

A new study has found that transplantation of stem cells from the lining of the spinal cord, called ependymal stem cells, reverses paralysis associated with spinal cord injuries in laboratory tests. The findings show that ...

Recommended for you

Yellowstone's thermal springs—their colors unveiled

Dec 19, 2014

Researchers at Montana State University and Brandenburg University of Applied Sciences in Germany have created a simple mathematical model based on optical measurements that explains the stunning colors of ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.