University of Tennessee scientist helps NASA mission that could determine building blocks of life

Jul 18, 2011

The plot has the makings of a summer blockbuster: An asteroid on a potential collision course with our planet holds the power to destroy life on Earth but also holds clues to what seeded it with the ingredients for life. One of the people seeking to recover its precious planetary science clues, while at the same time learning enough to prevent any collision with Earth, is the University of Tennessee, Knoxville's own Josh Emery.

Emery, an assistant professor in the and planetary sciences department, is helping lead a sample-return to the unnamed , 1999 RQ36. The $800 million mission is coined OSIRIS-REx, which stands for Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer.

Scheduled for in 2016, the mission will return the first pristine samples ever taken from the special type of asteroid holding clues to the origin of the solar system and suspected that could
be the building blocks for .

"The asteroid's organic materials, and the detailed analyses that we will perform on Earth will tell us a lot about how life began and whether it could get started anywhere else," said Emery.

"We will also look for water since 'wet' asteroids may be the most likely contributors of water—another necessary ingredient for life—to the earth."

In addition, the mission will investigate an object potentially hazardous to humanity. RQ36, a third of a mile in diameter in size, has a 1-in-1,800 chance of hitting Earth in 2170, and a 1-in-1,000 chance in 2182. However, this probability could grow due to a phenomenon called the Yarkovsky effect, which causes asteroids to accelerate slightly when they absorb sunlight and then re-emit it as heat. Studying the asteroid's size, mass, orbit, and thermal properties will help the scientists better predict the risk as well as outline a strategy if needed.

To collect samples, mission scientists will use a three-meter-long arm to shoot nitrogen into the asteroid and collect the dirt or gravel that is stirred up as a result. Emery likens the sampling procedure to "a very gentle kiss."

The team of scientists have four instruments that will work together to collect the samples; map the topography, shape, and composition; measure the heat emitted by the asteroid's surface to determine the thermal properties and gravitational field; and measure its mass distribution.

The spacecraft is scheduled to arrive at the asteroid by 2020 and bring samples back to Earth in 2023.

The mission is led by Professor Michael Drake of the University of Arizona, and the team includes researchers from the University of Arizona, NASA Goddard Space Flight Center, Lockheed Martin, Arizona State University, KinetX, the Canadian Space Agency, NASA Johnson Space Center, NASA Ames Research Center, and NASA Langley Research Center, along with science team members from across academia.

Explore further: Astronauts to reveal sobering data on asteroid impacts

Provided by University of Tennessee at Knoxville

5 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

ASU instrument plays key role in NASA mission

Jan 06, 2010

(PhysOrg.com) -- An instrument designed at Arizona State University to identify and map the minerals on the surface of an asteroid is a key element in a new NASA mission-concept. Philip Christensen, in the School of Earth ...

Recommended for you

Astronauts to reveal sobering data on asteroid impacts

8 hours ago

This Earth Day, Tuesday, April 22, three former NASA astronauts will present new evidence that our planet has experienced many more large-scale asteroid impacts over the past decade than previously thought… ...

Rosetta instrument commissioning continues

9 hours ago

We're now in week four of six dedicated to commissioning Rosetta's science instruments after the long hibernation period, with the majority now having completed at least a first initial switch on.

Astronaut salary

9 hours ago

Talk about a high-flying career! Being a government astronaut means you have the chance to go into space and take part in some neat projects—such as going on spacewalks, moving robotic arms and doing science ...

Red moon at night; stargazer's delight

Apr 16, 2014

Monday night's lunar eclipse proved just as delightful as expected to those able to view it. On the East Coast, cloudy skies may have gotten in the way, but at the National Science Foundation's National Optical ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Vendicar_Decarian
5 / 5 (2) Jul 19, 2011
All funding for this research will be abolished by Republicans on Aug 2, 2011.

More news stories

Cosmologists weigh cosmic filaments and voids

(Phys.org) —Cosmologists have established that much of the stuff of the universe is made of dark matter, a mysterious, invisible substance that can't be directly detected but which exerts a gravitational ...

Hubble image: A cross-section of the universe

An image of a galaxy cluster taken by the NASA/ESA Hubble Space Telescope gives a remarkable cross-section of the Universe, showing objects at different distances and stages in cosmic history. They range ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...

Deadly human pathogen Cryptococcus fully sequenced

Within each strand of DNA lies the blueprint for building an organism, along with the keys to its evolution and survival. These genetic instructions can give valuable insight into why pathogens like Cryptococcus ne ...