New technique advances bioprinting of cells

Jul 01, 2011

Ever since an ordinary office inkjet printer had its ink cartridges swapped out for a cargo of cells about 10 years ago and sprayed out cell-packed droplets to create living tissue, scientists and engineers have never looked at office equipment in quite the same way. They dream of using a specialized bio-inkjet printer to grow new body parts for organ transplants or tissues for making regenerative medicine repairs to ailing bodies. Both these new therapies begin with a carefully printed mass of embryonic stem cells. And now there's progress on getting that initial mass of stem cells printed.

By extending his pioneering acoustical work that applied to generate droplets from fluids, Dr. Utkan Demirci and his team at Harvard Medical School's (Brigham and Women's Hospital) Bio-Acoustic Mems in Medicine Laboratory report encouraging preliminary results at an early and crucial point in a stem cell's career known as embroid body formation. Their research results appear in the journal Biomicrofluids, published by the .

Getting the embroid body formed correctly and without mechanical trauma is key to preserving the stem cells' astounding ability to develop into any desired tissue. Their new automated bioprinting approach appears to do this better than manual pipetting in the "hang-drop" method traditionally used.

Notes Dr. Demirci: "To have the capability to manipulate cells in a high-throughput environment reliably and repeatedly, whether it is a single cell or tens of thousands of cells in a single droplet, has the potential to enable potential solutions to many problems in medicine and engineering."

Three research results stand out:

  • Enhanced uniformity of size and ability to control droplet size. These are key variables because they determine how the embroid bodies will grow.
  • Achieving a scalable system that can print one cell or tens of thousands per droplet—a level of precise manipulation not previously available.
  • Faster droplet formation. The new system delivers 160 droplets/seconds, versus 10 minutes for the hang-drop method.
The next step involves assessing the two methods to compare their effects on cell function. Says Dr. Demirci: "We are eager to take it to the next level."

Explore further: How plant cell compartments change with cell growth

More information: The article, "Embryonic stem cell bioprinting for uniform and controlled size embryoid body formation," by Feng Xu, Banupriya Sridharan, SuiQi Wang, Umut Gurkan, Brian Syverud, and Utkan Demirci, appears in the journal Biomicrofluidics.

Provided by American Institute of Physics

not rated yet
add to favorites email to friend print save as pdf

Related Stories

US researchers identify first human lung stem cell

May 11, 2011

For the first time, researchers at Brigham and Women's Hospital (BWH) have identified a human lung stem cell that is self-renewing and capable of forming and integrating multiple biological structures of the lung including ...

Sweet success for new stem cell ID trick

Nov 20, 2008

(PhysOrg.com) -- Biomaterial scientists in Manchester believe they have found a new way of isolating the ‘ingredients’ needed for potential stem cell treatments for nerve damage and heart disease.

Scientists announce stem-cell discovery

Apr 20, 2006

U.S. scientists say they've uncovered signatures near crucial developmental genes -- a critical step toward creating embryonic stem cells for medicine.

Embryonic stem cells used to grow cartilage

Sep 06, 2007

Rice University biomedical engineers have developed a new technique for growing cartilage from human embryonic stem cells, a method that could be used to grow replacement cartilage for the surgical repair of knee, jaw, hip, ...

Recommended for you

How plant cell compartments change with cell growth

Aug 22, 2014

A research team led by Kiminori Toyooka from the RIKEN Center for Sustainable Resource Science has developed a sophisticated microscopy technique that for the first time captures the detailed movement of ...

Plants can 'switch off' virus DNA

Aug 22, 2014

A team of virologists and plant geneticists at Wageningen UR has demonstrated that when tomato plants contain Ty-1 resistance to the important Tomato yellow leaf curl virus (TYLCV), parts of the virus DNA ...

A better understanding of cell to cell communication

Aug 22, 2014

Researchers of the ISREC Institute at the School of Life Sciences, EPFL, have deciphered the mechanism whereby some microRNAs are retained in the cell while others are secreted and delivered to neighboring ...

A glimpse at the rings that make cell division possible

Aug 22, 2014

Forming like a blown smoke ring does, a "contractile ring" similar to a tiny muscle pinches yeast cells in two. The division of cells makes life possible, but the actual mechanics of this fundamental process ...

User comments : 0