Testing the T-shirt antenna

June 30, 2011
Testing the T-shirt Antenna
NPL's Dr Tian Hong Loh in the SMART chamber

NPL worked with BAE Systems Advanced Technology Centre, to measure the pattern and efficiency of radiation emitted from next generation wearable antennas embedded in T-shirts.

Wearable antennas could be the future of wireless technology and have important applications in communications, security and healthcare, but as they are worn on the body it is particularly important to understand their performance. The human body absorbs electromagnetic signals and so there are concerns that the emitted signal from the could suffer from power losses if worn too close.

The research tested a number of novel measurement techniques that could help the development of this exciting new technology, including measuring the radiation absorbed by a 'human dummy', designed from material that mimics the characteristics of human tissue.

Dr James Matthews, Principal Engineer, BAE Systems Advanced Technology Centre, said:

"NPL provided an excellent quality set of measurements, despite the difficulties inherent in wearable antenna technology. NPL took time to understand the requirements and took a proactive approach to the challenge, providing wider ranging measurements than originally anticipated."

NPL facilities used during the research included the Reverberation Chamber, Fully Anechoic Small Antenna Radiated Testing (SMART) Range, the EMC Ferrite Lined Fully Anechoic Room (FAR) and specific absorption rate (SAR) facilities.

The collaborative research revealed that there is an optimum distance for the position of the antenna in relation to the body, which can improve the antenna's efficiency. This information, when integrated into antenna design, will help developers produce better products.

Explore further: NEC Develops Wideband Wearable Antenna Prototype

Related Stories

NIST antenna calibrations extended to 60-110 GHz

May 25, 2007

The National Institute of Standards and Technology (NIST) has developed a new "tabletop" sized facility to improve characterization of antennas operating in the 60 to 110 gigahertz (GHz) frequency range. This extended frequency ...

Engineered metamaterials enable remarkably small antennas

January 26, 2010

In an advance that might interest Q-Branch, the gadget makers for James Bond, the National Institute of Standards and Technology and partners from industry and academia have designed and tested experimental antennas that ...

Textile antenna promises futuristic communications

September 28, 2009

(PhysOrg.com) -- With a simple press on his shirt insignia, the captain of the Star Ship Enterprise could send and receive messages. Now, thanks to the efforts of a Finnish company, this futuristic communication may not be ...

Recommended for you

Microsoft aims at Apple with high-end PCs, 3D software

October 26, 2016

Microsoft launched a new consumer offensive Wednesday, unveiling a high-end computer that challenges the Apple iMac along with an updated Windows operating system that showcases three-dimensional content and "mixed reality."

Making it easier to collaborate on code

October 26, 2016

Git is an open-source system with a polarizing reputation among programmers. It's a powerful tool to help developers track changes to code, but many view it as prohibitively difficult to use.

Dutch unveil giant vacuum to clean outside air

October 25, 2016

Dutch inventors Tuesday unveiled what they called the world's first giant outside air vacuum cleaner—a large purifying system intended to filter out toxic tiny particles from the atmosphere surrounding the machine.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.