Testing the T-shirt antenna

Jun 30, 2011
Testing the T-shirt Antenna
NPL's Dr Tian Hong Loh in the SMART chamber

NPL worked with BAE Systems Advanced Technology Centre, to measure the pattern and efficiency of radiation emitted from next generation wearable antennas embedded in T-shirts.

Wearable antennas could be the future of wireless technology and have important applications in communications, security and healthcare, but as they are worn on the body it is particularly important to understand their performance. The human body absorbs electromagnetic signals and so there are concerns that the emitted signal from the could suffer from power losses if worn too close.

The research tested a number of novel measurement techniques that could help the development of this exciting new technology, including measuring the radiation absorbed by a 'human dummy', designed from material that mimics the characteristics of human tissue.

Dr James Matthews, Principal Engineer, BAE Systems Advanced Technology Centre, said:

"NPL provided an excellent quality set of measurements, despite the difficulties inherent in wearable antenna technology. NPL took time to understand the requirements and took a proactive approach to the challenge, providing wider ranging measurements than originally anticipated."

NPL facilities used during the research included the Reverberation Chamber, Fully Anechoic Small Antenna Radiated Testing (SMART) Range, the EMC Ferrite Lined Fully Anechoic Room (FAR) and specific absorption rate (SAR) facilities.

The collaborative research revealed that there is an optimum distance for the position of the antenna in relation to the body, which can improve the antenna's efficiency. This information, when integrated into antenna design, will help developers produce better products.

Explore further: Researchers use passive UHF RFID tags to detect how people interact with objects

Related Stories

NIST antenna calibrations extended to 60-110 GHz

May 25, 2007

The National Institute of Standards and Technology (NIST) has developed a new "tabletop" sized facility to improve characterization of antennas operating in the 60 to 110 gigahertz (GHz) frequency range. This extended frequency ...

Textile antenna promises futuristic communications

Sep 28, 2009

(PhysOrg.com) -- With a simple press on his shirt insignia, the captain of the Star Ship Enterprise could send and receive messages. Now, thanks to the efforts of a Finnish company, this futuristic communication ...

Recommended for you

Intellectual property in 3D printing

Apr 16, 2015

The implications of intellectual property in 3D printing have been outlined in two documents created for the UK government by Bournemouth University's Dinusha Mendis and Davide Secchi, and Phil Reeves of Econolyst Ltd.

World-record electric motor for aircraft

Apr 16, 2015

Siemens researchers have developed a new type of electric motor that, with a weight of just 50 kilograms, delivers a continuous output of about 260 kilowatts – five times more than comparable drive systems. ...

Space open for business, says Electron launch system CEO

Apr 15, 2015

Space, like business, is all about time and money, said Peter Beck, CEO of Rocket Lab, a US company with a New Zealand subsidiary. The problem, he added, is that, in cost and time, space has remained an incredibly ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.