Physicists calculate how to make atomic clocks super-accurate

Jun 02, 2011 by Ann Manser

(PhysOrg.com) -- When it comes to atomic clocks, every second counts. In fact, according to Marianna Safronova, every quintillionth of a second counts.

Safronova, an associate professor of physics at UD, and colleagues recently reported on their research, in which they have devised a new calculation to aid ultra-precise timekeeping. Their findings could lead to the development of an atomic clock that loses only a second in about 32 billion years -- more than twice the estimated .

"Extremely high-precision clocks have a lot of applications, from tracking of deep-space probes to testing the fundamental principles of science," Safronova said, noting that all global positioning systems (GPS) are based on .

Her team's research was reported at the 2011 Conference on Lasers and Electro-Optics, held recently in Baltimore, and the 2011 Joint Conference of the IEEE International Control Symposium and European Frequency and Time Forum, held in San Francisco. Safronova was the lead author of the research paper, co-authored by physicist Mikhail Kozlov of the Petersburg Nuclear Physics Institute in Russia and Charles Clark, a physicist at the Joint Quantum Institute in Maryland.

The researchers studied the effect of heat on the measurements used to keep time in atomic clocks and found a way to calculate those effects and, therefore, improve precision. The most precise clock currently in existence, developed last year by the National Institute for Standards and Technology (NIST) in Boulder, Colo., loses about a second every 3.7 billion years, for an uncertainty of 8.6 parts in 10 to the 18th power.

The NIST device is a clock, which is based on the atomic energy levels in the aluminum-plus ion, an aluminum atom that has lost one electron. The electrons in the ion vibrate between their highest energy orbit, or , and lowest energy orbit, or ground state, at an extremely precise frequency, and that frequency is what the uses to keep time.

"You have to know that difference to evaluate the accuracy of the clock, but it turns out that the frequency does change very slightly with temperature," Safronova said. "The frequency is defined at absolute zero, but the room isn't at absolute zero."

The temperature affects the ion's transition frequency because heat—even the tiny amount that exists throughout the environment and is known as "blackbody radiation"—changes the size of the electron clouds and causes the two energy levels to shift, she said. She and her team have now calculated a way to account for that very small shift and improve the precision of the timekeeping measurements.

In addition to applications such as GPS, atomic clocks may be used to synchronize broadband data streams and in a variety of scientific experiments. Safronova noted that the process of moving toward more and more precise clocks also yields further benefits in the development of state-of-the-art technology such as specialized fibers and lasers.

And, she said, perhaps even more importantly, "With ultra-precision clocks, you can see if the fundamental laws of physics change with time."

Explore further: New filter could advance terahertz data transmission

Related Stories

Portable Precision: A New Type of Atomic Clock

Dec 10, 2008

(PhysOrg.com) -- The most accurate atomic clocks in the world are based on the output of cesium atoms. These ultra-precise fountain clocks measure the frequency and time interval of seconds by using a fountain-like movement ...

Portable Precision: A New Type of Atomic Clock

Jun 11, 2009

The most accurate atomic clocks in the world are based on the output of cesium atoms. These ultra-precise fountain clocks measure the frequency and time interval of seconds by using a fountain-like movement of cesium atoms. ...

Optical Atomic Clock: A long look at the captured atoms

Feb 05, 2008

Optical clocks might become the atomic clocks of the future. Their "pendulum", i.e. the regular oscillation process which each clock needs, is an oscillation in the range of the visible light. As its frequency is higher than ...

Recommended for you

New filter could advance terahertz data transmission

Feb 27, 2015

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

Feb 27, 2015

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

A new X-ray microscope for nanoscale imaging

Feb 27, 2015

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

Top-precision optical atomic clock starts ticking

Feb 26, 2015

A state-of-the-art optical atomic clock, collaboratively developed by scientists from the University of Warsaw, Jagiellonian University, and Nicolaus Copernicus University, is now "ticking away" at the National ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.