Fungi reduce need for fertilizer in agriculture

May 23, 2011

The next agricultural revolution may be sparked by fungi, helping to greatly increase food-production for the growing needs of the planet without the need for massive amounts of fertilizers according to research presented today at the 111th General Meeting of the American Society for Microbiology in New Orleans.

"The United Nations conservatively estimates that by the year 2050 the global human population is expected to reach over 9 billion. Feeding such a population represents an unprecedented challenge since this goes greatly beyond current global food production capacity," says Ian Sanders of the University of Lusanne, Switzerland, speaking in a session entitled "How Can Help Feed the World."

Sanders studies , a type of fungus that live in with . When plants make symbioses with these fungi they tend to grow larger because the fungi acquire the essential nutrient phosphate for the plant. Phosphate is a key component of the that fueled the in middle of the 20th century that made it possible then for agriculture to keep up with the growing global population.

"In most tropical soils plants have enormous difficulty in obtaining phosphate and so farmers have to spend a huge amount of money on phosphate fertilizer. Farmers have to add much more fertilizer than in temperate regions and a very large amount of the cost to produce food is the cost of phosphate," says Sanders.

Phosphate reserves are being rapidly depleted. Increasing demand for the nutrient is driving up prices and some countries are now stockpiling phosphate to feed their populations in the future, according to Sanders.

While mycorrhizal fungi typically only grow on the roots of plants, recent biotechnological breakthroughs now allow scientists to produce massive quantities of the fungus that can be suspended in high concentrations in a gel for easy transportation.

Sanders and his colleagues are currently testing the effectiveness of this gel on crops in the country of Colombia where they have discovered that with the gel they can produce the same yield of potato crop with less than half the amount of phosphate fertilizers.

"While our applied research is focused on Colombia it could be applied in many other tropical regions of the world," says Sanders.

Explore further: Researchers uncover secrets of internal cell fine-tuning

Provided by American Society for Microbiology

not rated yet
add to favorites email to friend print save as pdf

Related Stories

With fungi on their side, rice plants grow to be big

Jun 10, 2010

By tinkering with a type of fungus that lives in association with plant roots, researchers have found a way to increase the growth of rice by an impressive margin. The so-called mycorrhizal fungi are found ...

Plant nutrients from wastewater

Sep 07, 2010

Nitrogen, phosphorous and potassium -- there are valuable nutrients contained in wastewater. Unfortunately, these essential nutrients are lost in conventional wastewater treatment plants. This is the reason why researchers ...

Hairy secret of foraging plants discovered

Feb 18, 2010

(PhysOrg.com) -- The genes that control the hairy 'mining machine' that makes some plants better at finding nutrients in poor soils than others have been discovered by scientists from Oxford University and ...

Using waste to recover waste uranium

Sep 07, 2009

Using bacteria and inositol phosphate, a chemical analogue of a cheap waste material from plants, researchers at Birmingham University have recovered uranium from the polluted waters from uranium mines. The same technology ...

Recommended for you

Researchers uncover secrets of internal cell fine-tuning

18 hours ago

New research from scientists at the University of Kent has shown for the first time how the structures inside cells are regulated – a breakthrough that could have a major impact on cancer therapy development.

Microscopic rowing—without a cox

19 hours ago

Many different types of cell, including sperm, bacteria and algae, propel themselves using whip-like appendages known as flagella. These protrusions, about one-hundredth of a millimetre long, function like ...

Illuminating the dark side of the genome

Jul 29, 2014

Almost 50 percent of our genome is made up of highly repetitive DNA, which makes it very difficult to be analysed. In fact, repeats are discarded in most genome-wide studies and thus, insights into this part ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Justsayin
not rated yet May 27, 2011
Hopefully this would also be applied to local lawn and landscaping reducing runoff and fish kills.