Exposing ZnO nanorods to visible light removes microbes

May 12, 2011

The practical use of visible light and zinc oxide nanorods for destroying bacterial water contamination has been successfully demonstrated by researchers at the Asian Institute of Technology (AIT). Nanorods grown on glass substrates and activated by solar energy have been found to be effective in killing both gram positive and gram negative bacteria – a finding that has immense possibilities for affordable and environmentally friendly water purification techniques.

"Most studies so far either work on the use of ultraviolet light or involve a suspension of nanoparticles," revealed Prof. Joydeep Dutta, director of the Center for Excellence in Nanotechnology at AIT. The AIT research group has dispensed with both. Instead of using a suspension of nanoparticles, which have to be removed later after the water purification process, or relying on UV light, the group demonstrated a system featuring visible light and ZnO nanorods. "The key concept was to incorporate deliberate defects in ZnO nanorods by creating oxygen vacancies and interstitials, which then allows absorption," he explained.

Environmentally friendly approach

Such ZnO nanorods grown on glass were tested on Escherichia coli and Bacillus subtilis bacteria, which are commonly used as model microbes. In the dark, ZnO dissolves slowly releasing zinc ions, which have anti bacterial properties, as it penetrates the bacterial cell envelope thereby thwarting the growth of microbes. Under well lit conditions, the effect is doubled with both photocatalysis and zinc ions playing their part in killing the microbes.

The implications of these experiments are enormous. "Since ZnO has now been tested under solar light, instead of the traditionally used UV light, the potential for commercial applications is huge, particularly since the levels of removed from the rods to the water are safe for human consumption," added Dutta.

The team, which also includes Dr. Oleg V Shipin, Ajaya Sapkota, Dr. Alfredo J Anceno, Mr. Sunandan Baruah and Ms. Mayuree Jaisai, is continuing its work on photocatalysis for use in water decontamination.

Explore further: Blades of grass inspire advance in organic solar cells

More information: The original research can be read in the journal Nanotechnology at this link iopscience.iop.org/0957-4484/22/21/215703/

Provided by Asian Institute of Technology

5 /5 (2 votes)
add to favorites email to friend print save as pdf

Related Stories

Chemists measure copper levels in zinc oxide nanowires

Feb 19, 2008

Chemists at the National Institute of Standards and Technology have been the first to measure significant amounts of copper incorporated into zinc oxide (ZnO) nanowires during fabrication. The issue is important ...

Low-Temperature Growth and Properties of ZnO Nanowires

Jun 01, 2004

Xuan Wang et al. from Peking University, China report in the last issue of Applied Physics Letters about ZnO nanowires grown through evaporation of zinc powders under a low temperature of 400 C. Being about 10 ...

UV light stick purifies water

Feb 25, 2010

(PhysOrg.com) -- Today, about one billion people on Earth don't have access to clean drinking water, and that number is expected to increase even more in the coming years. To solve this problem, inventors ...

Recommended for you

Nanoparticles give up forensic secrets

2 hours ago

A group of researchers from Switzerland has thrown light on the precise mechanisms responsible for the impressive ability of nanoparticles to detect fingermarks left at crime scenes.

Blades of grass inspire advance in organic solar cells

Sep 30, 2014

Using a bio-mimicking analog of one of nature's most efficient light-harvesting structures, blades of grass, an international research team led by Alejandro Briseno of the University of Massachusetts Amherst ...

How to make a "perfect" solar absorber

Sep 29, 2014

The key to creating a material that would be ideal for converting solar energy to heat is tuning the material's spectrum of absorption just right: It should absorb virtually all wavelengths of light that ...

User comments : 0