Exposing ZnO nanorods to visible light removes microbes

May 12, 2011

The practical use of visible light and zinc oxide nanorods for destroying bacterial water contamination has been successfully demonstrated by researchers at the Asian Institute of Technology (AIT). Nanorods grown on glass substrates and activated by solar energy have been found to be effective in killing both gram positive and gram negative bacteria – a finding that has immense possibilities for affordable and environmentally friendly water purification techniques.

"Most studies so far either work on the use of ultraviolet light or involve a suspension of nanoparticles," revealed Prof. Joydeep Dutta, director of the Center for Excellence in Nanotechnology at AIT. The AIT research group has dispensed with both. Instead of using a suspension of nanoparticles, which have to be removed later after the water purification process, or relying on UV light, the group demonstrated a system featuring visible light and ZnO nanorods. "The key concept was to incorporate deliberate defects in ZnO nanorods by creating oxygen vacancies and interstitials, which then allows absorption," he explained.

Environmentally friendly approach

Such ZnO nanorods grown on glass were tested on Escherichia coli and Bacillus subtilis bacteria, which are commonly used as model microbes. In the dark, ZnO dissolves slowly releasing zinc ions, which have anti bacterial properties, as it penetrates the bacterial cell envelope thereby thwarting the growth of microbes. Under well lit conditions, the effect is doubled with both photocatalysis and zinc ions playing their part in killing the microbes.

The implications of these experiments are enormous. "Since ZnO has now been tested under solar light, instead of the traditionally used UV light, the potential for commercial applications is huge, particularly since the levels of removed from the rods to the water are safe for human consumption," added Dutta.

The team, which also includes Dr. Oleg V Shipin, Ajaya Sapkota, Dr. Alfredo J Anceno, Mr. Sunandan Baruah and Ms. Mayuree Jaisai, is continuing its work on photocatalysis for use in water decontamination.

Explore further: Thinnest feasible nano-membrane produced

More information: The original research can be read in the journal Nanotechnology at this link iopscience.iop.org/0957-4484/22/21/215703/

Provided by Asian Institute of Technology

5 /5 (2 votes)
add to favorites email to friend print save as pdf

Related Stories

Chemists measure copper levels in zinc oxide nanowires

Feb 19, 2008

Chemists at the National Institute of Standards and Technology have been the first to measure significant amounts of copper incorporated into zinc oxide (ZnO) nanowires during fabrication. The issue is important ...

Low-Temperature Growth and Properties of ZnO Nanowires

Jun 01, 2004

Xuan Wang et al. from Peking University, China report in the last issue of Applied Physics Letters about ZnO nanowires grown through evaporation of zinc powders under a low temperature of 400 C. Being about 10 ...

UV light stick purifies water

Feb 25, 2010

(PhysOrg.com) -- Today, about one billion people on Earth don't have access to clean drinking water, and that number is expected to increase even more in the coming years. To solve this problem, inventors ...

Recommended for you

Thinnest feasible nano-membrane produced

Apr 17, 2014

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Wiring up carbon-based electronics

Apr 17, 2014

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

Making 'bucky-balls' in spin-out's sights

Apr 16, 2014

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

User comments : 0

More news stories

'Exotic' material is like a switch when super thin

(Phys.org) —Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance ...

Innovative strategy to facilitate organ repair

A significant breakthrough could revolutionize surgical practice and regenerative medicine. A team led by Ludwik Leibler from the Laboratoire Matière Molle et Chimie (CNRS/ESPCI Paris Tech) and Didier Letourneur ...

Health care site flagged in Heartbleed review

People with accounts on the enrollment website for President Barack Obama's signature health care law are being told to change their passwords following an administration-wide review of the government's vulnerability to the ...

Airbnb rental site raises $450 mn

Online lodging listings website Airbnb inked a $450 million funding deal with investors led by TPG, a source close to the matter said Friday.