Nature helps to solve a sticky problem

Apr 05, 2011

The arrays of fine adhesive hairs or 'setae' on the foot pads of many insects, lizards and spiders give them the ability to climb almost any natural surface. Research by James Bullock and Walter Federle from the University of Cambridge in England found that the different forces required to peel away these adhesive hairs from surfaces are what allows beetles to adhere to diverse surfaces, thereby reducing the risk of detachment. Their study, published online in the Springer journal Naturwissenschaften – The Nature of Science, reports the first adhesive force measurements from single microscopic setae in a live animal.

The adhesive hairs on the feet of leaf beetles are known to take three distinct shapes; pointed, flat (spatula-tipped) and disk-like. They are arranged in specific patterns across the beetle's feet, indicating different biological functions for each hair type. Given their small size (only 1/200th of a millimeter across), there existed no way to determine their individual properties. Bullock and Federle therefore devised a method for measuring the in vivo stickiness of each hair using a fine glass cantilever. By observing the deflection of the cantilever through a microscope, the force needed to detach each hair was calculated.

Results in male beetles showed that the disk-like hairs adhered with the highest force, followed by spatula-tipped and then pointed hairs. Disk-like hairs were also stiffer than either flat or pointed hairs, likely providing stability to the pad. Bullock and Federle suggest that it is these disk-like hairs in particular which allow male to achieve strong adhesion on smooth surfaces. This ability is also important for the males during copulation to hold on firmly to the back of the females. The other hair types, being easier to 'un-stick', may help the beetle to rapidly detach its feet when running upside down.

Before these natural structures can be replicated as synthetic adhesives, a better understanding of their detailed function is needed. The authors conclude, "The question of how forces in natural adhesive systems run from the single-hair to the whole-animal level is a central, unresolved problem. Its understanding will be a prerequisite for the design of bio-inspired synthetic adhesives."

Explore further: New process can convert human-generated waste into fuel in space

More information: Bullock JMR and Federle W (2011). Beetle adhesive hairs differ in stiffness and stickiness: In vivo adhesion measurements on individual setae. Naturwissenschaften – The Science of Nature. DOI:10.1007/s00114-011-0781-4

add to favorites email to friend print save as pdf

Related Stories

Duct tape that never loses its stick

Jan 07, 2005

Gecko feet hold key to development of self-cleaning adhesives Duct tape that never loses its stick. Bandages that come off without sticky residue or an "ouch." Gecko feet may hold the key to the developmen ...

Secrets of the gecko foot help robot climb (w/ Video)

Aug 24, 2010

(PhysOrg.com) -- The science behind gecko toes holds the answer to a dry adhesive that provides an ideal grip for robot feet. Stanford mechanical engineer Mark Cutkosky is using the new material, based on ...

Humidity makes gecko feet stickier

Oct 15, 2010

Geckos have amazingly sticky feet. Their stickability comes from billions of dry microscopic hairs that coat the soles of their feet. However, when humidity increases, gecko feet stick even tighter to smooth ...

Recommended for you

Electronic switches on the molecular scale

Nov 25, 2014

A molecular electronic switch is a junction created from individual molecules that can alternate between two or more stable states, making the switch act as a conductor or an insulator. These switches show ...

Mimicking photosynthesis with man-made leaves

Nov 25, 2014

Scientists have long been trying to emulate the way in which plants harvest energy from the sun through photosynthesis. Plants are able to absorb photons from even weak sunlight using light antennae made ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.