e-MERLIN set to give wizard new view of Hubble Deep Field region

Apr 21, 2011
Composite image of 19 sets of observations by the MERLIN and VLA radio telescope arrays. The high resolution of the map is illustrated by the inset images of selected galaxies in the field. The most central image is expanded twice (including an e-MERLIN high-resolution image), and depicts a type of galaxy with a bright Active Galactic Nucleus, thought to be caused by matter falling towards a central super-massive black hole. This close-up is the most recent image taken by e-MERLIN and clearly reveals the compact core - less than 0.05 arc-seconds in diameter.

(PhysOrg.com) -- The Hubble Deep Field (HDF), taken by the Hubble Space Telescope in the 1990s, is one of the most iconic images in astronomy.  Now, astronomers at Jodrell Bank Observatory have produced a high-resolution mosaic of the HDF region using observations from the MERLIN and VLA radio telescope arrays, as well as the new e-MERLIN array.

Nineteen separate images have been stitched together to create the widest high-resolution radio map of the region to date. The area observed measures a quarter of a degree wide, about half the apparent diameter of the full moon, and depicts numerous billions of light-years away. The map is inset with images showing even sharper views of some of the galaxies observed.  The map will be presented at the RAS National Meeting in Llandudno by graduate student, Nick Wrigley, on Wednesday 20th April.
 
The MERLIN array is in the final stages of an upgrade to become the e-MERLIN array of seven radio telescopes, spanning 217km, connected by a new optical fibre network and operated from Jodrell Bank by the University of Manchester. Wrigley, under the supervision of Dr. Rob Beswick and Dr. Tom Muxlow at the Jodrell Bank Centre for Astrophysics, has created the map as a pilot study for a future e-MERLIN survey, which will focus on ever deeper (more sensitive) studies in the HDF region.  The survey will measure massive and Active Galactic Nucleus (AGN) activity in very distant galaxies, tracing the development of the stellar populations and black hole growth in the first massive galaxies.
 
"This type of high-resolution imagery provided by MERLIN, and soon e-MERLIN, will allow astronomers to distinguish between different types of galaxies mapped, with the wide field of view allowing relative populations to be determined, giving insights into how they change over cosmological time.  In the centre of the image is a galaxy with a bright AGN, a feature thought to be caused by matter falling towards a central super-massive black hole. This close-up is the most recent image taken by e-MERLIN and shows the compact core in extraordinary detail," said Wrigley.
 
"Through e-MERLIN, we will get our first truly reliable view of the distribution of star formation within typical galaxies at the time when the bulk of the stars in the present-day Universe were being formed. e-MERLIN will help us disentangle the mystery of why we see apparently simultaneous growth of the black holes and stellar populations in galaxies," added Muxlow.
 
"Using the more accurate observations from e-MERLIN, it will be possible to produce more precise models of the physical process of star formation and understand how star clusters affect the growth of stellar populations, providing answers to some key questions in modern cosmology."

Explore further: Measuring the proper motion of a galaxy

add to favorites email to friend print save as pdf

Related Stories

Massive stars' magnetically controlled diets

Feb 18, 2010

(PhysOrg.com) -- A team of astronomers, led by Dr. Wouter Vlemmings at Bonn University, has used the MERLIN radio telescope network centred on the Jodrell Bank Observatory to show that magnetic fields play ...

Survey Reveals Building Block Process For Biggest Galaxies

Apr 12, 2006

A new study of the universe's most massive galaxy clusters shows how mergers play a critical role in their evolution. Astronomers used the twin Gemini Observatory instruments in Hawaii and Chile, and the Hubble Space Telescope ...

Surprise: Dwarf galaxy harbors supermassive black hole

Jan 09, 2011

(PhysOrg.com) -- The surprising discovery of a supermassive black hole in a small nearby galaxy has given astronomers a tantalizing look at how black holes and galaxies may have grown in the early history ...

A Black Hole in Medusa's Hair

Mar 11, 2009

This composite image of the Medusa galaxy (also known as NGC 4194) shows X-ray data from NASA's Chandra X-ray Observatory in blue and optical light from the Hubble Space Telescope in orange. Located above ...

Recommended for you

Measuring the proper motion of a galaxy

13 minutes ago

The motion of a star relative to us can be determined by measuring two quantities, radial motion and proper motion. Radial motion is the motion of a star along our line of sight. That is, motion directly ...

Gravitational waves according to Planck

16 hours ago

Scientists of the Planck collaboration, and in particular the Trieste team, have conducted a series of in-depth checks on the discovery recently publicized by the Antarctic Observatory, which announced last ...

Infant solar system shows signs of windy weather

16 hours ago

Astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA) have observed what may be the first-ever signs of windy weather around a T Tauri star, an infant analog of our own Sun. This may help ...

Finding hints of gravitational waves in the stars

23 hours ago

Scientists have shown how gravitational waves—invisible ripples in the fabric of space and time that propagate through the universe—might be "seen" by looking at the stars. The new model proposes that ...

How gamma ray telescopes work

Sep 22, 2014

Yesterday I talked about the detection of gamma ray bursts, intense blasts of gamma rays that occasionally appear in distant galaxies. Gamma ray bursts were only detected when gamma ray satellites were put ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Vendicar_Decarian
3 / 5 (1) Apr 21, 2011
Once again, we see American Science falling behind that of the rest of the world.